Advertisement

Controlled Operations as a Cryptographic Primitive

  • Boris V. Izotov
  • Alexander A. Moldovyan
  • Nick A. Moldovyan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2052)

Abstract

Controlled two-place operations (CTPO) are introduced as a new cryptographic primitive for the block ciphers. Design criteria, structure, some good cryptographic properties of the CTPO are considered. There are proposed CTPO representing single nonlinear operations on the operands of relatively large length. It is shown that CTPO in combination with the controlled permutations (CP) can be efficiently used to construct fast block ciphers. Three different cryptoschemes based on data-dependent two-place operations and data-dependent permutations are presented. A feature of the cryptoschemes is the use of the CTPO and CP for construction of some mechanisms of the internal key scheduling which consists in data-dependent transformation of the round keys.

Keywords

Block Cipher Encryption Function Round Function Bent Function Cryptographic Primitive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, W.: Method and System for Machine Enciphering and Deciphering. U.S.Patent. 4157454 (1979)Google Scholar
  2. 2.
    Madryga, W.E.: A High Performance Encryption Algorithm. Computer security: a global challenge, Elsevier Science Publishers (1984) 557–570Google Scholar
  3. 3.
    Rivest, R.L.: The RC5 Encryption Algorithm. Fast Software Encryption — FSE’94 Proceedings. Springer-Verlag LNCS. Vol. 1008 (1995) 86–96Google Scholar
  4. 4.
    Rivest, R.L., Robshaw, M.J.B., Sidney, R. and Yin, Y.L.: The RC6 Block Cipher. Proceedings of the 1st Advanced Encryption Standard Candidate Conference. Venture, California (Aug. 20–22, 1998) (http://www.nist.gov/aes)
  5. 5.
    Burwick, C., Coppersmith, D., D’Avingnon, E., Gennaro, R., Halevi, Sh., Jutla, Ch., Matyas,Jr. S.M., O’Connor, L., Peyravian, M., Safford, D., and Zunic, N.: MARS — a Candidate Cipher for AES. Proceedings of 1st Advanced Encryption Standard Candidate Conference. Venture, California (Aug. 20–22, 1998)Google Scholar
  6. 6.
    Benes, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic, Academic Press, New York (1965)zbMATHGoogle Scholar
  7. 7.
    Waksman, A.A.: Permutation Network. Journal of the ACM, Vol. 15.1 (1968) 159–163CrossRefGoogle Scholar
  8. 8.
    Portsa, M.: On the Use of Interconnection Networks in Cryptography. Advances in Cryptology-EUROCRYT’91 Proceedings. Springer Verlag LNCS, Vol. 547. (1991) 302–315Google Scholar
  9. 9.
    Goots, N.D., Moldovyan, A.A., Moldovyan, A.A.: Fast Encryptuion Algorithm SPECTRH64. International Workshop Mathematical Methods, Models and Architectures for Computer Network Security — MMM-2001 Proceedings. Springer Verlag LNCS. This vol. (2001)Google Scholar
  10. 10.
    Moldovyan, A.A., Moldovyan, N.A. and Moldovyanu, P.A.: A Method of the Block Cryptographical Transformation of the Binary Information. Russian patent 2141729. Bull. no 32 (1999)Google Scholar
  11. 11.
    Maslovsky, V.M., Moldovyan, A.A., and Moldovyan, N.A.: A Method of the Block Encryption of Discrete Data. Russian patent 2140710. Bull. no 30 (1999)Google Scholar
  12. 12.
    Goots, N.D., Izotov, B.V., Moldovyan, A.A., Moldovyan, N.A.: Design of the Controlled Two-place Operations for Fast Flexible Cryptosystems, Security of the Information Technologies, MIPhI, 4 (2000, in Russian)Google Scholar
  13. 13.
    Biham, E., and Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard, Springer Verlag (1993)Google Scholar
  14. 14.
    Nyberg, K.: Differentially Uniform Mappings for Cryptography. Advances in Cryptology-EUROCRYT’93 Proceedings. Springer Verlag LNCS. Vol. 765 (1994) 55–64Google Scholar
  15. 15.
    Matsui, M.: Linear Cryptoanalysis Method for DES Cipher. Advances in Cryptology — EUROCRYT’93 Proceedings. Springer Verlag LNCS. Vol. 765 (1994) 386–397Google Scholar
  16. 16.
    Nyberg, K.: Linear Approximations of Block Ciphers. Advances in Cryptology — EUROCRYT’94 Proceedings. Springer Verlag LNCS. Vol. 950 (1994) 139–144Google Scholar
  17. 17.
    Nyberg, K.: Constructions of Bent Functions and Difference Sets. Advances in Cryptology-EUROCRYT’90 Proceedings. Springer Verlag LNCS. Vol. 473 (1991) 151–160Google Scholar
  18. 18.
    Kurosawa, K., Satoh T.: Desigh of SAC/PC(l) of Order k Boolean Functions and Three Other Cryptographic Criteria. Advances in Cryptology-EUROCRYT’97 Proceedings. Springer Verlag LNCS (1998) 434–449Google Scholar
  19. 19.
    Nyberg, K., Knudsen, L.: Provable Security Against a Differential Attack. Advances in Cryptology — CRYPTO’92 Proceedings. Springer Verlag LNCS. Vol. 740 (1994) 566–574Google Scholar
  20. 20.
    Lai, X., Massey, J.L.: Markov Ciphers and Differential Cryptanalysis. Advances in Cryptology-EUROCRYT’91 Proceedings. Springer Verlag LNCS. Vol. 547 (1992) 17–38Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Boris V. Izotov
    • 1
  • Alexander A. Moldovyan
    • 1
  • Nick A. Moldovyan
    • 1
  1. 1.Specialized Center of Program Systems “x’sPECTR’”St. PetersburgRussia

Personalised recommendations