Advertisement

A Hybrid Immune Algorithm with Information Gain for the Graph Coloring Problem

  • Vincenzo Cutello
  • Giuseppe Nicosia
  • Mario Pavone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2723)

Abstract

We present a new Immune Algorithm that incorporates a simple local search procedure to improve the overall performances to tackle the graph coloring problem instances. We characterize the algorithm and set its parameters in terms of Information Gain. Experiments will show that the IA we propose is very competitive with the best evolutionary algorithms.

Keywords

Immune Algorithm Information Gain Graph coloring problem Combinatorial optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dasgupta, D. (ed.): Artificial Immune Systems and their Applications. Springer-Verlag, Berlin Heidelberg New York (1999)zbMATHGoogle Scholar
  2. 2.
    De Castro L.N., Timmis J.: Artificial Immune Systems: A New Computational Intelligence Paradigm. Springer-Verlag, UK (2002)Google Scholar
  3. 3.
    Forrest, S., Hofmeyr, S. A.: Immunology as Information Processing. Design Principles for Immune System & Other Distributed Autonomous Systems. Oxford Univ. Press, New York (2000)Google Scholar
  4. 4.
    Nicosia, G., Castiglione, F., Motta, S.: Pattern Recognition by primary and secondary response of an Artificial Immune System. Theory in Biosciences 120 (2001) 93–106Google Scholar
  5. 5.
    Galinier, P., Hao, J.: Hybrid Evolutionary Algorithms for Graph Coloring. Journal of Combinatorial Optimization Vol. 34 (1999) 379–397zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Marino, A., Damper, R.I.: Breaking the Symmetry of the Graph Colouring Problem with Genetic Algorithms. Workshop Proc. of the Genetic and Evolutionary Computation Conference (GECCO’00). Las Vegas, NV: Morgan Kaufmann (2000)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  8. 8.
    Mehrotra, A., Trick, M.A.: A Column Generation Approach for Graph Coloring. INFORMS J. on Computing 8 (1996) 344–354zbMATHGoogle Scholar
  9. 9.
    Caramia, M., Dell’Olmo, P.: Iterative Coloring Extension of a Maximum Clique. Naval Research Logistics, 48 (2001) 518–550zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge. American Mathematical Society, Providence, RI (1996)zbMATHGoogle Scholar
  11. 11.
    De Castro, L. N., Von Zuben, F. J.: The Clonal Selection Algorithm with Engineering Applications. Proceedings of GECCO 2000, Workshop on Artificial Immune Systems and Their Applications, (2000) 36–37Google Scholar
  12. 12.
    De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. on Evolutionary Computation Vol. 63 (2002) 239–251CrossRefGoogle Scholar
  13. 13.
    Nicosia, G., Castiglione, F., Motta, S.: Pattern Recognition with a Multi-Agent model of the Immune System. Int. NAISO Symposium (ENAIS’2001). Dubai, U.A.E. ICSC Academic Press, (2001) 788–794Google Scholar
  14. 14.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. on Evolutionary Computation, Vol. 32 (1999) 124–141CrossRefGoogle Scholar
  15. 15.
    Leung, K., Duan, Q., Xu, Z., Wong, C.W.: A New Model of Simulated Evolutionary Computation — Convergence Analysis and Specifications. IEEE Trans. on Evolutionary Computation Vol. 51 (2001) 3–16CrossRefGoogle Scholar
  16. 16.
    Seiden P.E., Celada F.: A Model for Simulating Cognate Recognition and Response in the Immune System. J. Theor. Biol. Vol. 158 (1992) 329–357CrossRefGoogle Scholar
  17. 17.
    Nicosia, G., Cutello, V.: Multiple Learning using Immune Algorithms. Proceedings of the 4th International Conference on Recent Advances in Soft Computing, RASC 2002, Nottingham, UK, 12–13 December (2002)Google Scholar
  18. 18.
    Johnson, D.R., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: An experimental evaluation; part II, graph coloring and number partitioning. Operations Research 39 (1991) 378–406zbMATHCrossRefGoogle Scholar
  19. 19.
    Barbosa, V.C., Assis, C.A.G., do Nascimento, J.O.: Two Novel Evolutionary Formulations of the Graph Coloring Problem. Journal of Combinatorial Optimization (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Vincenzo Cutello
    • 1
  • Giuseppe Nicosia
    • 1
  • Mario Pavone
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly

Personalised recommendations