Advertisement

Clustering and Dynamic Data Visualization with Artificial Flying Insect

  • S. Aupetit
  • N. Monmarché
  • M. Slimane
  • C. Guinot
  • G. Venturini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2723)

Abstract

We present in this paper a new bio-inspired algorithm that dynamically creates and visualizes groups of data. This algorithm uses the concepts of flying insects that move together in complex manner with simple local rules. Each insect represents one datum. The insect moves aim at creating homogeneous groups of data that evolve together in a 2D environment in order to help the domain expert to understand the underlying class structure of the data set.

References

  1. 1.
    R. Cucchiara. Analysis and comparison of different genetic models for the clustering problem in image analysis. In R.F. Albrecht, C.R. Reeves, and N.C. Steele, editors, International Conference on Artificial Neural Networks and Genetic Algorithms, pages 423–427. Springer-Verlag, 1993.Google Scholar
  2. 2.
    D. R. Jones and M.A. Beltrano. Solving partitioning problems with genetic algorithms. In Belew and Booker, editors. Fourth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, 1991., pages 442–449.Google Scholar
  3. 3.
    E. D. Lumer and B. Faieta. Diversity and adaptation in populations of clustering ants. In D. Cliff, P. Husbands, J.A. Meyer, and Stewart W., editors, Proceedings of the Third International Conference on Simulation of Adaptive Behavior, pages 501–508. MIT Press, Cambridge, Massachusetts, 1994.Google Scholar
  4. 4.
    N. Monmarché, M. Slimane, and G. Venturini. On improving clustering in numerical databases with artificial ants. In D. Floreano, J.D. Nicoud, and F. Mondala, editors, 5th European Conference on Artificial Life (ECAL’99), Lecture Notes in Artificial Intelligence, volume 1674, pages 626–635, Swiss Federal Institute of Technology, Lausanne, Switzerland, 13–17 September 1999. Springer-Verlag.Google Scholar
  5. 5.
    G. Proctor and C. Winter. Information flocking: Data visualisation in virtual worlds using emergent behaviours. In J.-C. Heudin, editor, Proc. 1st Int. Conf. Virtual Worlds, VW, volume 1434, pages 168–176. Springer-Verlag, 1998.Google Scholar
  6. 6.
    C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Computer Graphics (SIGGRAPH’ 87 Conference Proceedings), 21(4):25–34, 1987.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • S. Aupetit
    • 1
  • N. Monmarché
    • 1
  • M. Slimane
    • 1
  • C. Guinot
    • 2
  • G. Venturini
    • 1
  1. 1.École Polytechnique de l’Université de Tours - Département InformatiqueLaboratoire d’Informatique de l’Université de ToursToursFrance
  2. 2.CE.R.I.E.S.Neuilly sur Seine Cédex

Personalised recommendations