Advertisement

Running Time Complexity of Printing an Acyclic Automaton

  • Franck Guingne
  • André Kempe
  • Florent Nicart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2759)

Abstract

This article estimates the worst-case running time complexity for traversing and printing all successful paths of a normalized trim acyclic automaton. First, we show that the worst-case structure is a festoon with distribution of arcs on states as uniform as possible. Then, we prove that the complexity is maximum when we have a distribution of e (Napier constant) outgoing arcs per state on average, and that it can be exponential in the number of arcs.

Keywords

Source State Regular Language Finite Automaton Preceding Destination Rational Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berstel, J. 1989. Finite Automata and Rational Languages. An Introduction, in Formal Properties of Finite Automata and Applications. In J.-E. Pin, editor, Lecture Notes in Computer Science, number 386. Verlag, 1989 edition, pages 2–14.Google Scholar
  2. Caron, P. and D. Ziadi. 2000. Characterization of Glushkov automata. Theoret. Comput. Sci., 233(1–2):75–90.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Eilenberg, S. 1974. Automata, Languages, and Machines, volume A. Academic Press, San Diego, CA, USA.zbMATHGoogle Scholar
  4. Giammarresi, D., J.-L. Ponty, and D. Wood. 2001. Thompson digraphs: A characterization, in WIA’99. Lecture Notes in Computer Science, 2214:91–100.CrossRefGoogle Scholar
  5. Hopcroft, J. E, R. Motwani, and J. D Ullman. 2001. Introduction to Automata Theory, Languages and Computation. Low Price Edition. Addison Wesley Longman, Inc, Reading, Mass., USA, 2 edition.Google Scholar
  6. Nicaud, C. 2000. Étude du comportement en moyenne des automates finis et des languages rationnels. Thesis, University of Paris 7.Google Scholar
  7. Perrin, D. 1990. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science: Volume B: Formal Models and Semantics. Elsevier, Amsterdam, pages 1–57.Google Scholar
  8. Yu, S., Q. Zhuang, and K. Salomaa. 1994. The state complexities of some basic operations on regular languages. Theoret. Comput. Sci., 125(2):315–328.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Franck Guingne
    • 1
    • 2
  • André Kempe
    • 1
  • Florent Nicart
    • 1
    • 2
  1. 1.Grenoble LaboratoryXerox Research Centre EuropeMeylanFrance
  2. 2.Laboratoire d’Informatique Fondamentale et Appliquée de Rouen Faculté des Sciences et des TechniquesUniversité de RouenMont-Saint-AignanFrance

Personalised recommendations