Advertisement

Exact Real Computation in Computer Algebra

  • Gábor Bodnár
  • Barbara Kaltenbacher
  • Petru Pau
  • Josef Schicho
Conference paper
  • 399 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2630)

Abstract

Exact real computation allows many of the advantages of numerical computation (e.g. high performance) to be accessed also in symbolic computation, providing validated results. In this paper we present our approach to build a transparent and easy to use connection between the two worlds, using this paradigm. The main discussed topics are: representation of exact real objects, operations on exact real matrices, polynomial greatest common divisor and root computation. Some of these problems are ill-posed; we use regularization methods to solve them.

Keywords

Computer Algebra Symbolic Computation Monic Polynomial Mathematical Entity Sylvester Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aberth, O. (1998): Precise numerical methods using C++. Academic Press Inc., San Diego, CAGoogle Scholar
  2. [2]
    Arsenin, V., and Tikhonov, A. N. (1977): Solutions of ill-posed problems. WileyGoogle Scholar
  3. [3]
    Ben-Israel, A., and Greville, T. N. E. (1974): Generalized Inverses: Theory and Applications. WileyGoogle Scholar
  4. [4]
    Bini, D., and Fiorentino, G. (2000): Design, analysis, and implementation of a multiprecision polynomial rootfinder. Num. Alg. 23, 127–173zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Boehm, H., and Cartwright, R. (1990): Exact real arithmetic, formulating real numbers as functions. In: Research Topics in Functional Programming, Turner D. (ed.) Addison-Wesley, 43–64Google Scholar
  6. [6]
    Corless, R., Gianni, P., Trager, B., and Watt, S. (1995): The singular value decomposition for polynomial systems. In: Proc. ISSAC’95, ACM Press, 195–207Google Scholar
  7. [7]
    Engl, H. (1999): Regularization methods for solving inverse problems. In: Proc. ICIAM 99Google Scholar
  8. [8]
    Escardó, M. H. (2000): Exact numerical computation. In: ISSAC’00, ACM Press, tutorial.Google Scholar
  9. [9]
    Gianantonio, P. (1993): Real number computability and domain theory. In: Proc. Math. Found. Comp. Sci.’ 93, Springer, 413–422Google Scholar
  10. [10]
    Gonzalez-Vega, L., Rouillier, F., Roy, M.-F., and Trujillo, G. (2000): Symbolic recipes for real solutions. Algorith. Comp. Math. 4, 121–167MathSciNetGoogle Scholar
  11. [11]
    Higham, N. J. (1993): Accuracy and stability of numerical algorithms. SIAMGoogle Scholar
  12. [12]
    Hribernig, V., and Stetter, H.-J. (1997) Detection and validation of clusters of polynomial zeroes. Journal of Symbolic Computation 24, 667–682zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Ménissier-Morain, V. (2001): Arbitrary precision real arithmetic: design and algorithms. PreprintGoogle Scholar
  14. [14]
    Moore, R. E. (1966): Interval Anaysis. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  15. [15]
    Neumaier, A. (1988): An existence test for root clusters and multiple roots. ZAMM 68, 257–259MathSciNetGoogle Scholar
  16. [16]
    Noda, M. T., and Sasaki, T. (1989): Approximate square-free decomposition and rootfinding for ill-conditioned algebraic equations. J. Inf. Proc. 12, 159–168zbMATHMathSciNetGoogle Scholar
  17. [17]
    Roy, M.-F., and Szpirglas, A. (1990): Complexity of computation of real algebraic numbers. Journal of Symbolic Computation 10, 39–51zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Stetter, H.-J. (2000): Condition analysis of overdetermined algebraic problems. In: Proc. CASC 2000, 345–365.Google Scholar
  19. [19]
    Strzeboński, A. (1997): Computing in the field of complex algebraic numbers. Journal of Symbolic Computation 24, 647–656CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Tran, Q.-N. (1996): A Hybrid Symbolic-Numerical Approach in Computer Aided Geometric Design (CAGD) and Visualization. PhD thesis, Johannes Kepler University, RISC-LinzGoogle Scholar
  21. [21]
    Winkler, F. (1996): Polynomial algorithms in computer algebra. SpringerGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gábor Bodnár
    • 1
  • Barbara Kaltenbacher
    • 1
  • Petru Pau
    • 1
  • Josef Schicho
    • 1
  1. 1.SFB Numerical and Symbolic ComputationJohannes Kepler UniversityLinzAustria

Personalised recommendations