Accurate Numerical Fourier Transform in d-Dimensions

  • Normand Beaudoin
  • Steven S. Beauchemin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2630)


The classical method of numerically computing Fourier transforms of digitized functions in one or in d-dimensions is the so-called Discrete Fourier Transform (DFT) efficiently implemented as Fast Fourier Transform (FFT) algorithms. In many cases, the DFT is not an adequate approximation of the continuous Fourier transform. Because the DFT is periodical, spectrum aliasing may occur. The method presented in this contribution provides accurate approximations of the continuous Fourier transform with similar time complexity. The assumption of signal periodicity is no longer posed and allows to compute numerical Fourier transforms in a broader domain of frequency than the usual half-period of the DFT. The aliasing introduced by periodicity can be reduced to a negligible level even with a relatively low number of sampled data points. In addition, this method yields accurate numerical derivatives of any order and polynomial splines of any odd order with their optimum boundary conditions. The numerical error on results is easily estimated. The method is developed in one and in d-dimensions and numerical examples are presented.


Fourier Transform Fast Fourier Transform Time Complexity Discrete Fourier Transform Digitize Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brigham, E. O. (1974): The Fast Fourier Transform. Prentice-HallGoogle Scholar
  2. 2.
    Morrison, N. (1994): Introduction to Fourier Analysis. Wiley-InterscienceGoogle Scholar
  3. 3.
    Marchildon, L. (2000): Mécanique Quantique. De Boeck UniversitéGoogle Scholar
  4. 4.
    Kittel, C. (1983): Physique de l’ État Solide. Dunod UniversitéGoogle Scholar
  5. 5.
    Shapiro, L. G., Stockman G. C. (2001): Computer Vision. Prentice HallGoogle Scholar
  6. 6.
    Schutte J. (1981): New Fast Fourier Transform Algorithm for Linear System Analysis Applied in Molecular Beam Relaxation Spectroscopy. Rev. Sci. Instrum., 52(3), 400–404CrossRefGoogle Scholar
  7. 7.
    Makinen S. (1982): New Algorithm for the Calculation of the Fourier Transform of Discrete Signals. Rev. Sci. Instrum., 53(5), 627–630CrossRefGoogle Scholar
  8. 8.
    Sorella S., Ghosh S. K. (1984): Improved Method for the Discrete Fast Fourier Transform. Rev. Sci. Instrum., 55(8), 1348–1352CrossRefGoogle Scholar
  9. 9.
    Froeyen M., Hellemans L. (1985): Improved Algorithm for the Discrete Fourier Transform. Rev. Sci. Instrum., 56(12), 2325–2327CrossRefGoogle Scholar
  10. 10.
    Gaskill, J. D. (1974): Linear Systems, Fourier Transform, and Optics. Prentice-HallGoogle Scholar
  11. 11.
    Beaudoin, N. (1999): PhD. Thesis. Université du Québec à Trois-Rivières. CanadaGoogle Scholar
  12. 12.
    Butkov, E. (1968): Mathematical Physics. Addison-Wesley ReadingGoogle Scholar
  13. 13.
    Kreyszig, E. (1983): Advanced Engineering Mathematics. WileyGoogle Scholar
  14. 14.
    Beaudoin N. (1998): A High-accuracy Mathematical and Numerical Method for Fourier Transform, Integral, Derivative, and Polynomial Splines of any Order. Canadian Journal of Physics, 76(9), 659–677CrossRefGoogle Scholar
  15. 15.
    Gerald C. F., Wheatley P. O. (1989): Applied Numerical Analysis. Addison-Wesley ReadingGoogle Scholar
  16. 16.
    Ventsel H. (1973): Théorie des Probabilités. Editions MirGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Normand Beaudoin
    • 1
  • Steven S. Beauchemin
    • 1
  1. 1.The University of Western OntarioLondonCanada

Personalised recommendations