Advertisement

Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems

  • Evelyne Hubert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2630)

Abstract

This is the first in a series of two tutorial articles devoted to triangulation-decomposition algorithms. The value of these notes resides in the uniform presentation of triangulation-decomposition of polynomial and differential radical ideals with detailed proofs of all the presented results. We emphasize the study of the mathematical objects manipulated by the algorithms and show their properties independently of those. We also detail a selection of algorithms, one for each task. We address here polynomial systems and some of the material we develop here will be used in the second part, devoted to differential systems.

Keywords

Prime Ideal Radical Ideal Symbolic Computation Polynomial System Zero Divisor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AK93]
    S. A. Abramov and K. Y. Kvashenko. The greatest common divisor of polynomials that depend on a parameter. Vestnik Moskovskogo Universiteta. Seriya XV. Vychislitel’ naya Matematika i Kibernetika, 2: 65–71, 1993. translation in Moscow Univ. Comput. Math. Cybernet. 1993, no. 2, 59–64.MathSciNetGoogle Scholar
  2. [ALMM99]
    P. Aubry, D. Lazard, and M. Moreno-Maza. On the theories of triangular sets. Journal of Symbolic Computation, 28(1–2), 1999.Google Scholar
  3. [AMM99]
    P. Aubry and M. Moreno-Maza. Triangular sets for solving polynomial systems: a comparative implementation of four methods. Journal of Symbolic Computation, 28(1–2):125–154, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [ARSED03]
    P. Aubry, F. Rouillier, and M. Safey El Din. Real solving for positive dimensional systems. Journal of Symbolic Computation, 33(6):543–560, 2003.MathSciNetGoogle Scholar
  5. [Aub99]
    P. Aubry. Ensembles triangulaires de polynomes et résolution de systèmes algébriques. Implantation en Axiom. PhD thesis, Université de Paris 6, 1999Google Scholar
  6. [BJ01]
    A. M. Bellido and V. Jalby. Spécifcations des algorithmes de triangulation de systèmes algébro-élémentaires. C. R. Acad. Sci. Paris, Ser. I(334):155–159, 2001.Google Scholar
  7. [BKRM01]
    D. Bouziane, A. Kandri Rody, and H. Maârouf. Unmixed-dimensional decomposition of a finitely generated perfect differential ideal. Journal of Symbolic Computation, 31(6):631–649, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [BL00]
    F. Boulier and F. Lemaire. Computing canonical representatives of regular differential ideals. In C. Traverso, editor, ISSAC. ACM-SIGSAM, ACM, 2000.Google Scholar
  9. [BLOP95]
    F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of a finitely generated differential ideal. In A. H. M. Levelt, editor, ISSAC’95. ACM Press, New York, 1995.Google Scholar
  10. [BLOP97]
    F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Computing representations for radicals of finitely generated differential ideals. Technical Report IT-306, LIFL, 1997.Google Scholar
  11. [BW93]
    T. Becker and V. Weispfenning. Gröbner Bases — A Computational Approach to Commutative Algebra. Springer-Verlag, New York, 1993.zbMATHGoogle Scholar
  12. [CG90]
    S. C. Chou and X. S. Gao. Ritt-wu’s decomposition algorithm and geometry theorem proving. In M. E. Stickel, editor, 10th International Conference on Automated Deduction, number 449 in Lecture Notes in Computer Sciences, pages 207–220. Springer-Verlag, 1990.Google Scholar
  13. [CGZ94]
    S. C. Chou, X. S. Gao, and J. Z. Zhang. Machine proofs in geometry. World Scientific Publishing Co. Inc., River Edge, NJ, 1994. Automated productionof readable proofs for geometry theorems, With a foreword by Robert S. Boyer.zbMATHGoogle Scholar
  14. [CH03]
    T. Cluzeau and E. Hubert. Resolvent representation for regular differential ideals. Applicable Algebra in Engineering, Communication and Computing, 13(5):395–425, 2003.CrossRefMathSciNetGoogle Scholar
  15. [Cho88]
    S. C. Chou. Mechanical geometry theorem proving. D. Reidel Publishing Co., Dordrecht, 1988. With a foreword by Larry Wos.zbMATHGoogle Scholar
  16. [DDD85]
    J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing in algebraic number fields. In Proceedings of EUROCAL 85, number 204 in Lecture Notes in Computer Science, pages 289–290. Springer-Verlag, 1985.Google Scholar
  17. [Del99]
    S. Dellière. Triangularisation de systèmes constructibles. Application à l’évaluation dynamique. PhD thesis, Université de Limoges, 1999.Google Scholar
  18. [Del00a]
    S. Dellière. D. M. Wang simple systems and dynamic constructible closure. Technical Report 16, Laboratoire d’Arithmétique, de Calcul Formel et d’Optimisation, Limoges, http://www.unilim.fr/laco, 2000.Google Scholar
  19. [Del00b]
    S. Dellière. A first course to D7 with examples. http://www-lmc.imag.fr/lmc-cf/Claire.Dicrescenzo/D7, 2000.
  20. [Del00c]
    S. Dellière. Pgcd de deux polynômes à paramètres: approche par la clôture constructible dynamique et généralisation de la méthode de S. A. Abramov, K. Yu. Kvashenko. Technical Report RR-3882, INRIA, Sophia Antipolis, 2000. http://www.inria.fr/RRRT/RR-3882.html Google Scholar
  21. [Del01]
    S. Dellière. On the links between triangular sets and dynamic constructible closure. J. Pure Appl. Algebra, 163(1):49–68, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [Duv87]
    D. Duval. Diverses questions relatives au calcul formel avec des nombres algébriques. PhD thesis, Institut Fourier, Grenoble, 1987.Google Scholar
  23. [Eis94]
    D. Eisenbud. Commutative Algebra with a View toward Algebraic Geometry. Graduate Texts in Mathematics. Springer-Verlag New York, 1994.Google Scholar
  24. [FMM01]
    M. V. Foursov and M. Moreno Maza. On computer-assisted classification of coupled integrable equations. In Proceedings of the 2001 international symposium on Symbolic and algebraic computation, pages 129–136. ACM Press, 2001.Google Scholar
  25. [GC92]
    X. S. Gao and S. C. Chou. Solving parametric algebraic sytems. In ISSAC 92, pages 335–341. ACM Press, New York, NY, USA, 1992.CrossRefGoogle Scholar
  26. [GCL92]
    K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra. Kluwer Academic Publishers, Boston, MA, 1992.zbMATHGoogle Scholar
  27. [GD94]
    T. Gómez-Dîaz. Quelques applications de l’évaluation dynamique. PhD thesis, Université de Limoges, 1994.Google Scholar
  28. [Hub00]
    E. Hubert. Factorisation free decomposition algorithms in differential algebra. Journal of Symbolic Computation, 29(4–5):641–662, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [Hub03]
    E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms. II Differential systems. In this volume, 2003.Google Scholar
  30. [Kal93]
    M. Kalkbrener. A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. Journal of Symbolic Computation, 15(2):143–167, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [Kal98]
    M. Kalkbrener. Algorithmic properties of polynomial rings. Journal of Symbolic Computation, 26(5):525–582, November 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [Kol73]
    E. R. Kolchin. Differential Algebra and Algebraic Groups, volume 54 of Pure and Applied Mathematics. Academic Press, New York-London, 1973.zbMATHGoogle Scholar
  33. [Laz91]
    D. Lazard. A new method for solving algebraic systems of positive dimension. Discrete and Applied Mathematics, 33:147–160, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [Laz92]
    D. Lazard. Solving zero dimensional algebraic systems. Journal of Symbolic Computation, 15: 117–132, 1992.CrossRefMathSciNetGoogle Scholar
  35. [MKRS98]
    H. Maârouf, A. Kandri Rody, and M. Ssafini. Triviality and dimension of a system of algebraic differential equations. Journal of Automated Reasoning, 20(3):365–385, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  36. [MM97]
    M. Moreno-Maza. Calculs de pgcd au-dessus des tours d’extensions simples et résolution des systèmes d’équations algébriques. PhD thesis, Université Paris 6, 1997.Google Scholar
  37. [MMR95]
    M. Moreno Maza and R. Rioboo. Polynomial gcd computations over towers of algebraic extensions. In Applied algebra, algebraic algorithms and error-correcting codes (Paris, 1995), pages 365–382. Springer, Berlin, 1995.Google Scholar
  38. [Mor99]
    S. Morrison. The differential ideal [P]: M . Journal of Symbolic Computation, 28(4–5):631–656, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  39. [Ric99]
    D. Richardson. Weak Wu stratification in R n. Journal of Symbolic Computation, 28(1–2):213–223, 1999. Polynomial elimination—algorithms and applications.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [Rit30]
    J. F. Ritt. Manifolds of functions defined by systems of algebraic differential equations. Transaction of the American Mathematical Society, 32:569–598, 1930.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [Rit32]
    J. F. Ritt. Differential Equations from the Algebraic Standpoint. Amer. Math. Soc. Colloq. Publ., 1932.Google Scholar
  42. [Rit50]
    J. F. Ritt. Differential Algebra, volume XXXIII of Colloquium publications. American Mathematical Society, 1950. Reprinted by Dover Publications, Inc (1966).Google Scholar
  43. [Sch00]
    E. Schost. Sur la résolution des systèmes polynomiaux à paramètres. PhD thesis, École polytechnique, 2000.Google Scholar
  44. [SL98]
    J. Schicho and Z. Li. A construction of radical ideals in polynomial algebra. Technical Report 98-17, RISC-Linz, 1998. ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1998/98-17.ps.gz.
  45. [Sza98]
    A. Szanto. Computation with polynomial systems. PhD thesis, Cornell University, 1998.Google Scholar
  46. [Vas98]
    W. V. Vasconcelos. Computational Methods in Commutative Algebra and Algebraic Geometry, volume 2 of Algorithms and Computation in Mathematics. Springer, Berlin, 1998.Google Scholar
  47. [vzGG99]
    J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, New York, 1999.zbMATHGoogle Scholar
  48. [Wan93]
    D. Wang. An elimination method for polynomial systems. Journal of Symbolic Computation, 16(2): 83–114, August 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  49. [Wan98]
    D. Wang. Decomposing polynomial systems into simple systems. Journal of Symbolic Computation, 25(3):295–314, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  50. [Wan99]
    D. Wang. Elimination methods. Texts and Monographs in Symbolic Computation. Springer-Verlag Wien, 1999.Google Scholar
  51. [Wan00]
    D. Wang. Computing triangular systems and regular systems. Journal of Symbolic Computation, 30(2):221–236, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  52. [Wu78]
    W. T. Wu. On the decision problem and the mechanization of theorem-proving in elementary geometry. Sci. Sinica, 21(2):159–172, 1978.zbMATHMathSciNetGoogle Scholar
  53. [Wu94]
    W. T. Wu. Mechanical theorem proving in geometries. Springer-Verlag, Vienna, 1994. Basic principles, Translated from the 1984 Chinese original by Xiao Fan Jin and Dong Ming Wang.Google Scholar
  54. [Wu00]
    W. T. Wu. Mathematics mechanization. Kluwer Academic Publishers Group, Dordrecht, 2000. Mechanical geometry theorem-proving, mechanical geometry problem-solving and polynomial equations-solving.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Evelyne Hubert
    • 1
  1. 1.INRIA - Projet CAFESophia Antipolis

Personalised recommendations