Skip to main content

Fault-Hamiltonicity of Product Graph of Path and Cycle

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2697))

Included in the following conference series:

Abstract

We investigate hamiltonian properties of P m × C n, m ≥ 2 and even n ≥ 4, which is bipartite, in the presence of faulty vertices and/or edges. We show that P m × C n with n even is strongly hamiltonianlaceable if the number of faulty elements is one or less. When the number of faulty elements is two, it has a fault-free cycle of length at least mn−2 unless both faulty elements are contained in the same partite vertex set; otherwise, it has a fault-free cycle of length mn−4. A sufficient condition is derived for the graph with two faulty edges to have a hamiltonian cycle. By applying fault-hamiltonicity of P m × C n to a two-dimensional torus C m × C n, we obtain interesting hamiltonian properties of a faulty C m × C n.

This work was supported by grant No. 98-0102-07-01-3 from the Basic Research Program of the KOSEF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.C. Chen and N.F. Quimpo, “On strongly hamiltonian abelian group graphs,” in. Australian Conference on Combinatorial Mathematics (Lecture Notes in Mathematics #884), pp. 23–34, 1980.

    Google Scholar 

  2. S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho, “Hamiltonian-laceability of star graphs,” Networks 36(4), pp. 225–232, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Itai, C.H. Papadimitriou, and J.L. Czwarcfiter, “Hamiltonian paths in grid graphs,” SIAM J. Comput. 11(4), pp. 676–686, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  4. H.-C. Kim and J.-H. Park, “Fault hamiltonicity of two-dimensional torus networks,” in Proc. of Workshop on Algorithms and Computation WAAC’00, Tokyo, Japan, pp. 110–117, 2000.

    Google Scholar 

  5. J.S. Kim, S.R. Maeng, and H. Yoon, “Embedding of rings in 2-D meshes and tori with faulty nodes,” Journal of Systems Architecture 43, pp. 643–654, 1997.

    Article  Google Scholar 

  6. M. Lewinter and W. Widulski, “Hyper-hamilton laceable and caterpillar-spannable product graphs,” Computers Math. Applic. 34(11), pp. 99–104, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.-H. Park and K.Y. Chwa, “Recursive circulants and their embeddings among hypercubes,” Theoretical Computer Science 244, pp. 35–62, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. C.-H. Tsai, J.M. Tan, Y.-C. Chuang, and L.-H. Hsu, “Fault-free cycles and links in faulty recursive circulant graphs,” in Proc. of Workshop on Algorithms and Theory of Computation ICS2000, pp. 74–77, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, JH., Kim, HC. (2003). Fault-Hamiltonicity of Product Graph of Path and Cycle. In: Warnow, T., Zhu, B. (eds) Computing and Combinatorics. COCOON 2003. Lecture Notes in Computer Science, vol 2697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45071-8_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-45071-8_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40534-4

  • Online ISBN: 978-3-540-45071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics