Skip to main content

Neural Self-Organization Using Graphs

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2734))

Abstract

The self-organizing feature map (SOFM) algorithm can be generalized, if the regular neuron grid is replaced by an undirected graph. The training rule is furthermore very simple: after a competition step, the weights of the winner neuron and its neighborhood must be updated. The update is based on the generalized adjacency of the initial graph. This feature is invariant during the training; therefore its derivation can be achieved in the preprocessing. The newly developed self-organizing neuron graph (SONG) algorithm is applied in function approximation, character fitting and satellite image analysis. The results have proven the efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Carpenter: Neural network models for pattern recognition and associative memory, Neural Network, 1989, 2, 243–257

    Article  Google Scholar 

  2. M. Minsky, S. Papert: Perceptrons: An introduction to computational geometry, MIT Press, Cambridge, 1969 and 1972

    MATH  Google Scholar 

  3. Ch. von der Malsburg: Self-organization of orientation sensitive cells in the striate cortex, Kybernetik, 1973, 14, 85–100

    Article  Google Scholar 

  4. S. Grossberg: Adaptive pattern recognition and universal recoding, Parallel development and coding of neural feature detectors, Biological Cybernetics, 1976, 23, 121–134

    Article  MathSciNet  MATH  Google Scholar 

  5. G.A. Carpenter, S. Grossberg: A massively parallel architecture for self-organizing neural pattern recognition machine, Computer Vision, Graphics and Image Processing, 1987, 37, 54–115

    Article  Google Scholar 

  6. T. Kohonen: Self-Organization and associative memory, Springer, Berlin, 1984

    MATH  Google Scholar 

  7. T. Kohonen: Self-Organizing Maps, Springer, Berlin, 1995

    Google Scholar 

  8. G.A. Carpenter, S. Grossberg (Eds): Pattern recognition by self-organizing neural network, MIT Press, Cambridge, 1991

    Google Scholar 

  9. D.M. Kammen: Self-organization in neural networks, Harvard University, Cambridge, 1988

    Google Scholar 

  10. H. Demuth — M. Beale: Neural Network Toolbox, For Use with MATLAB, User’s Guide, The MathWorks, Natick, 1998

    Google Scholar 

  11. B. Bollobás: Modern Graph Theory, Springer Verlag, New York, 1998

    MATH  Google Scholar 

  12. R. Balakrishnan: A Textbook of Graph Theory, Springer Verlag, New York, 2000

    MATH  Google Scholar 

  13. F. Buckley, F. Harary: Distance in Graphs, Addison-Wesley, Redwood City, 1990

    MATH  Google Scholar 

  14. T. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen, Wissenschaftsverlag, Mannheim, 1993

    MATH  Google Scholar 

  15. W.K. Chen: Applied Graph Theory, Graphs and Electrical Networks, North-Holland, Amsterdam, 1976

    MATH  Google Scholar 

  16. R.G. Busacker, T.L. Saaty: Endliche Graphen und Netzwerke, Eine Einführung mit Anwendungen, Oldenbourg, München, 1968

    MATH  Google Scholar 

  17. E.J. Henley, R.A. Williams: Graph Theory in Modern Engineering, Academic Press, New York, 1973

    MATH  Google Scholar 

  18. I.N. Bronstein, K.A. Semendjajev, G. Musiol, H. Mühlig: Taschenbuch der Mathematik, Verlag Harri Deutsch, Frankfurt am Main, 2000, pp. 359–371

    Google Scholar 

  19. M.N.S. Swamy, K. Thulasiraman: Graphs, Networks and Algorithms, Wiley, New York, 1981

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barsi, A. (2003). Neural Self-Organization Using Graphs. In: Perner, P., Rosenfeld, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2003. Lecture Notes in Computer Science, vol 2734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45065-3_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45065-3_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40504-7

  • Online ISBN: 978-3-540-45065-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics