Skip to main content

Scaled Dimension and Nonuniform Complexity

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2719))

Abstract

Resource-bounded dimension is a complexity-theoretic extension of classical Hausdorff dimension introduced by Lutz (2000) in order to investigate the fractal structure of sets that have resource-bounded measure 0. For example, while it has long been known that the Boolean circuit-size complexity class SIZE(α2n/n) has measure 0 in ESPACE for all 0 ≤ α ≤ 1, we now know that SIZE(α2n/n) has dimension α in ESPACE for all 0 ≤ α ≤ 1. The present paper furthers this program by developing a natural hierarchy of “rescaled” resource-bounded dimensions. For each integer i and each set X of decision problems, we define the i th dimension of X in suitable complexity classes. The 0th-order dimension is precisely the dimension of Hausdorff (1919) and Lutz (2000). Higher and lower orders are useful for various sets X. For example, we prove the following for 0 ≤ α ≤ 1 and any polynomial q(n) ≥ n 2.

  1. 1.

    The class SIZE(2αn) and the time- and space-bounded Kolmogorov complexity classes KTq(2αn) and KSq(2αn) have 1st-order dimension α in ESPACE.

  2. 2.

    The classes \( SIZE\left( {2^{n^\alpha } } \right) \), \( KT^q \left( {2^{n^\alpha } } \right) \), and \( KS^q \left( {2^{n^\alpha } } \right) \) have 2nd-order dimension α in ESPACE.

  3. 3.

    The classes KTq(2n(1 − 2αn)) and KSq(2n(1 − 2αn) have −1st-order dimension α in ESPACE.

This research was supported in part by National Science Foundation Grant 9988483.

This research was supported in part by National Science Foundation Grants 9610461 and 9988483.

This research was supported in part by Spanish Government MEC projects PB98-0937-C04-02 and TIC98-0973-C03-02. It was done while visiting Iowa State University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ambos-Spies, W. Merkle, J. Reimann, and F. Stephan. Hausdorff dimension in exponential time. In Proceedings of the 16th IEEE Conference on Computational Complexity, pages 210–217, 2001.

    Google Scholar 

  2. K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimension, algorithmic information, and computational complexity. Technical Report cs.CC/0211025, Computing Research Repository, 2002.

    Google Scholar 

  3. H.G. Eggleston. The fractional dimension of a set defined by decimal properties. Quarterly Journal of Mathematics, Oxford Series 20:31–36, 1949.

    Article  MathSciNet  Google Scholar 

  4. K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, 1990.

    Google Scholar 

  5. L. Fortnow and J. H. Lutz. Prediction and dimension. In Proceedings of the 15th Annual Conference on Computational Learning Theory, pages 380–395, 2002.

    Google Scholar 

  6. F. Hausdorff. Dimension und äusseres Mass. Mathematische Annalen, 79:157–179, 1919.

    Article  MathSciNet  Google Scholar 

  7. J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science. To appear.

    Google Scholar 

  8. J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theoretical Computer Science, 289(1):861–869, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. W. Juedes and J. H. Lutz. Completeness and weak completeness under polynomial-size circuits. Information and Computation, 125:13–31, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Lévy. Théorie de l’Addition des Variables Aleatoires. Gauthier-Villars, 1937 (second edition 1954).

    Google Scholar 

  11. J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing. To appear. Available as Technical Report cs.CC/0203016, Computing Research Repository, 2002.

    Google Scholar 

  12. J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation. To appear. Available as Technical Report cs.CC/0203017, Computing Research Repository, 2002.

    Google Scholar 

  13. J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44:220–258, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. H. Lutz. Resource-bounded measure. In Proceedings of the 13th IEEE Conference on Computational Complexity, pages 236–248, 1998.

    Google Scholar 

  15. C. A. Rogers. Hausdorff Measures. Cambridge University Press, 1998. Originally published in 1970.

    Google Scholar 

  16. C. P. Schnorr. Klassifikation der Zufallsgesetze nach Komplexität und Ordnung. Z. Wahrscheinlichkeitstheorie verw. Geb., 16:1–21, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. P. Schnorr. A unified approach to the definition of random sequences. Mathematical Systems Theory, 5:246–258, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. P. Schnorr. Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics, 218, 1971.

    Google Scholar 

  19. C. P. Schnorr. Process complexity and effective random tests. Journal of Computer and System Sciences, 7:376–388, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Ville. Étude Critique de la Notion de Collectif. Gauthier-Villars, Paris, 1939.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hitchcock, J.M., Lutz, J.H., Mayordomo, E. (2003). Scaled Dimension and Nonuniform Complexity. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds) Automata, Languages and Programming. ICALP 2003. Lecture Notes in Computer Science, vol 2719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45061-0_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-45061-0_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40493-4

  • Online ISBN: 978-3-540-45061-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics