Skip to main content

Mixed Measures and Inhomogeneous Boolean Models

  • Conference paper
  • First Online:
Statistical Physics and Spatial Statistics

Part of the book series: Lecture Notes in Physics ((LNP,volume 554))

Abstract

The Boolean model is the basic random set model for many applications. Its main advantage lies in the fact that it is determined by a single measure-valued parameter, the intensity measure. Whereas classically Boolean models were studied which are stationary and isotropic, some of the methods and results have been extended to the non-isotropic situation. More recent investigations consider inhomogeneous Boolean models, i.e. random sets without any invariance property. Density formulae for inhomogeneous Boolean models make use of local variants of the classical quermassintegrals, the surface area measures and curvature measures. Iterations of translative integral formulae for curvature measures lead to further measures of mixed type.

In this survey, we describe some of these local and mixed-type functionals from integral geometry and show how they can be used to extend density formulae for Boolean models from the stationary and isotropic case to the non-isotropic situation, and finally to inhomogeneous Boolean models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Daley, D. Vere-Jones (1988): An Introduction to the Theory of Point Processes. (Springer, New York)

    MATH  Google Scholar 

  2. Fallert, H. (1992): Intensitätsmaße und Quermaßdichten für (nichtstationäre) zufällige Mengen und geometrische Punktprozesse. PhD Thesis, Universität Karlsruhe.

    Google Scholar 

  3. Fallert, H. (1996):‘Quermaßdichten für Punktprozesse konvexer Körper und Boolesche Modelle’. Math. Nachr. 181, pp. 165–184.

    Article  MATH  MathSciNet  Google Scholar 

  4. Federer, H. (1959): ‘Curvature measures’. Trans. Amer. Math. Soc. 93, pp. 418–491.

    Article  MATH  MathSciNet  Google Scholar 

  5. Groemer, H. (1978): ‘On the extension of additive functionals on classes of convex sets’. Pacific J. Math. 75, pp. 397–410.

    MATH  MathSciNet  Google Scholar 

  6. Hahn, U., A. Micheletti, R. Pohlink, D. Stoyan, H. Wendrock (1999): ‘Stereological analysis and modelling of gradient structures’. J. Microscopy 195, pp. 113–124.

    Article  Google Scholar 

  7. Hahn, U., D. Stoyan (1998): ‘Unbiased stereological estimation of the surface area of gradient surface processes’. Adv. Appl. Probab. (SGSA) 30, pp. 904–920.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hug, D., G. Last (1999): ‘On support measures in Minkowski spaces and contact distributions in stochastic geometry’. Annals Probab., to appear.

    Google Scholar 

  9. Klain, D., G.-C. Rota (1997): Introduction to Geometric Probability. (Cambridge Univ. Press, Cambridge)

    MATH  Google Scholar 

  10. Matheron, G. (1975): Random Sets and Integral Geometry. (Wiley, New York)

    MATH  Google Scholar 

  11. McMullen, P. (1993): ‘Valuations and dissections’. In: Handbook of Convex Geometry, ed. by P. Gruber, J.M. Wills (Elsevier Science Publ., Amsterdam), pp. 933–988.

    Google Scholar 

  12. McMullen, P., R. Schneider (1983): ‘Valuations on convex bodies’. In: Convexity and Its Applications. ed. by P. Gruber, J.M. Wills (Birkhäuser, Basel), pp. 170–247.

    Google Scholar 

  13. Mecke, K. (1994): Integralgeometrie in der statistischen Physik. (Verlag Harri Deutsch, Thun)

    MATH  Google Scholar 

  14. Molchanov, I.S. (1997): Statistics of the Boolean Model for Practitioners and Mathematicians. (Wiley, New York)

    MATH  Google Scholar 

  15. Molchanov, I.S., D. Stoyan (1994): ‘Asymptotic properties of estimators for parameters of the Boolean model’. Adv. Appl. Probab. 26, pp. 301–323.

    Article  MATH  MathSciNet  Google Scholar 

  16. Quintanilla, J., S. Torquato (1997a): ‘Microstructure functions for a model of statistically inhomogeneous random media’. Phys. Rev. E 55, pp. 1558–1565.

    ADS  Google Scholar 

  17. Quintanilla, J., S. Torquato (1997b): ‘Clustering in a continuum percolation model’. Adv. Appl. Probab. (SGSA) 29, pp. 327–336.

    Article  MATH  MathSciNet  Google Scholar 

  18. Rataj, J. (1996): ‘Estimation of oriented direction distribution of a planar body’. Adv. Appl. Probab. (SGSA) 28, pp. 394–404.

    Article  MATH  MathSciNet  Google Scholar 

  19. Schneider, R. (1993): Convex Bodies: the Brunn-Minkowski Theory. (Cambridge Univ. Press, Cambridge)

    Book  MATH  Google Scholar 

  20. Schneider, R., W. Weil (1986): ‘Translative and kinematic integral formulae for curvature measures’. Math. Nachr. 129, pp. 67–80.

    Article  MATH  MathSciNet  Google Scholar 

  21. Schneider, R., W. Weil (1992): Integralgeometrie. (Teubner, Stuttgart)

    MATH  Google Scholar 

  22. Schneider, R., J.A. Wieacker (1993): ‘Integral geometry’. In: Handbook of Convex Geometry, ed. by P. Gruber, J.M. Wills (Elsevier Science Publ., Amsterdam), pp. 1349–1390.

    Google Scholar 

  23. Stoyan, D., W.S. Kendall, J. Mecke (1995): Stochastic Geometry and Its Applications. 2nd edn. (Wiley, New York)

    MATH  Google Scholar 

  24. Weil, W. (1990): ‘Iterations of translative integral formulae and non-isotropic Poisson processes of particles’. Math. Z. 205, pp. 531–549.

    Article  MATH  MathSciNet  Google Scholar 

  25. Weil, W. (1995): ‘The estimation of mean shape and mean particle number in overlapping particle systems in the plane’. Adv. Appl. Probab. 27, pp. 102–119.

    Article  MATH  MathSciNet  Google Scholar 

  26. Weil, W. (1999a): ‘Intensity analysis of Boolean models’. Pattern Recognition 32, pp. 1675–1684.

    Article  Google Scholar 

  27. Weil, W. (1999b): ‘Mixed measures and functionals of translative integral geometry’. Math. Nachr., to appear.

    Google Scholar 

  28. Weil, W. (1999c): ‘Densities of mixed volumes for Boolean models’, in preparation.

    Google Scholar 

  29. Weil, W. (1999d): ‘A uniqueness problem for non-stationary Boolean models’. Suppl. Rend. Circ. Mat. Palermo, II. Ser., to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weil, W. (2000). Mixed Measures and Inhomogeneous Boolean Models. In: Mecke, K.R., Stoyan, D. (eds) Statistical Physics and Spatial Statistics. Lecture Notes in Physics, vol 554. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45043-2_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45043-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67750-5

  • Online ISBN: 978-3-540-45043-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics