Skip to main content

Basic Ideas ofSpatial Statistics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 554))

Abstract

Basic ideas of spatial statistics are described for physicists. First an overview of various branches of spatial statistics is given. Then the notions of stationarity or homogeneity and isotropy are discussed and three stationary models of stochastic geometry are explained. Edge problems both in simulation and statistical estimation are explained including unbiased estimation of the pair correlation function. Furthermore, the application of Gibbs processes in spatial statistics is described, and finally simulation tests are explained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baddeley, A. (1999): ‘Spatial sampling and censoring’. In: [2], pp. 37–78

    Google Scholar 

  2. Barndor.-Nielsen, O.E., W.S. Kendall, M.N.M. van Lieshout (1999): Stochastic Geometry. Likelihood and Computation. (Chapman & Hall / CRC, Boca Raton, London, New York, Washington)

    Google Scholar 

  3. Chilès, J.-P., P. Delfiner (1999): Geostatistics. Modeling Spatial Uncertainity (J.Wiley & Sons, New York)

    Google Scholar 

  4. Cressie, N. (1993): Statistics of Spatial. Data. (J. Wiley & Sons, New York)

    Google Scholar 

  5. Davies, S., P. Hall (1999): ‘Fractal analysis of surface roughness by using spatial data’, J. Roy. Statist. Soc. B 61, pp. 3–37

    Article  Google Scholar 

  6. Diggle, P.J., T. Fiksel, P. Grabarnik, Y. Ogata, D. Stoyan, D., M. Tanemura (1994): ‘On parameter estimation for pairwise interaction point processes’. Int. Statist. Rev. 62, pp. 99–117

    Article  MATH  Google Scholar 

  7. Dryden, I.L., K.V. Mardia (1998): Statistical Shape Analysis (J. Wiley & Sons, Chichester)

    MATH  Google Scholar 

  8. Evans, J.W. (1993): ‘Random and cooperative adsorption’. Rev. Modern Phys 65, pp. 1281–1329

    Article  ADS  Google Scholar 

  9. Frieden, B.R. (1983): Probability, Statistical Optics, and Data Testing (Springer-Verlag, Berlin, Heidelberg, New York)

    MATH  Google Scholar 

  10. Georgii, H.-O. (1976): ‘Canonical and grand canonical Gibbs states for continuum systems’. Comm. Math. Phys. 48, pp. 31–51

    Article  ADS  MathSciNet  Google Scholar 

  11. Geyer, C. (1999): ‘Likelihood inference for spatial point processes’. In: [2], pp. 79–140.

    Google Scholar 

  12. Grenander, U. (1996): Elements of Pattern Theory (Johns Hopkins University Press, Baltimore and London)

    MATH  Google Scholar 

  13. Hahn, U., A. Micheletti, R. Pohlink, D. Stoyan, H. Wendrock (1999): ‘Stereological analysis and modelling of gradient structures’. J. Microsc. 195, pp. 113–124

    Article  Google Scholar 

  14. Hahn, U., D. Stoyan (1999): ‘Unbiased stereological estimation of the surface area of gradient surface processes’. Adv. Appl. Prob. 30 pp. 904–920

    MathSciNet  Google Scholar 

  15. Hansen, J.-P., I.R. McDonald (1986): Theory of Simple Liquids (Academic Press, London, Orlands, New York)

    Google Scholar 

  16. Heijmans, H.J.A.M. (1994): Morphological Image Operators (Academic Press, New York, London)

    MATH  Google Scholar 

  17. Hinrichsen, E.L., J. Feder, T. Jøssang (1986): ‘Geometry of random sequentail adsorption’. J. Statist. Phys. 44, pp. 793–827

    Article  ADS  Google Scholar 

  18. Jaynes, E.T. (1994): Probability Theory: The Logic of Science. Fragmentary edition of 1994. See http://www.omega.albany.edu:8008/JaynesBook.

  19. Jensen, E.B.V. (1998): Local Stereology (World Scientific, Singapore)

    MATH  Google Scholar 

  20. Kendall, W.S., M.N.M. van Lieshout, A.J. Baddeley (1999): ‘Quermass-interaction processes: Conditions for stability’. Adv. Appl. Prob. 31, pp. 315–342

    Article  MATH  Google Scholar 

  21. Matheron, G. (1975): Random Sets and Integral Geometry (J. Wiley & Sons, New York)

    MATH  Google Scholar 

  22. Matheron, G. (1989): Estimating and Choosing (Springer-Verlag, Berlin, Heidelberg, New York)

    MATH  Google Scholar 

  23. McGibbon, A.J., S.J. Pennycook, D.E. Jesson (1999): ‘Crystal structure retrieval by maximum entropy analysis of atomic resolution incoherent images’. J. Microsc. 195, pp. 44–57

    Article  Google Scholar 

  24. Mecke, K. (1996): ‘A morphological model for complex fluids’. J. Phys. Condens. Matter 8, pp. 9663–9667

    Article  ADS  Google Scholar 

  25. Møller, J. (1999): ‘Markov chain Monte Carlo and spatial point processes’. In: [2], pp. 141–172

    Google Scholar 

  26. Molchanov, I. (1997): Statistics of the Boolean Model for Practitioners and Mathematicians (J. Wiley & Sons, Chichester)

    MATH  Google Scholar 

  27. Molchanov, I. (1999): ‘Random closed sets’. In: [2], pp. 285–331

    Google Scholar 

  28. Ogata, Y., M. Tanemura (1981): ‘Estimation of interaction potentials of spatial point-patterns through the maximum-likelihood procedure’. Ann. Inst. Statist. Math. 33, pp. 315–338

    Article  MATH  Google Scholar 

  29. Ohser, J., F. Mücklich (2000): Statistical Analysis of Materials Structures (J. Wiley& Sons, Chichester)

    Google Scholar 

  30. Preston, C.J. (1976): Random Fields. Springer Lecture Notes in Mathematics 534. (Springer-Verlag Berlin, Heidelberg, New York)

    MATH  Google Scholar 

  31. Reiss, H., H.L. Frisch, J.L. Lebowitz (1959): ‘Statistical mechanics of rigid spheres’. J. Chem. Phys. 31, pp. 369–380

    Article  MathSciNet  ADS  Google Scholar 

  32. Ripley, B.D. (1988): Statistical Inference for Spatial Processes (Cambridge University Press, Cambridge, New York)

    Google Scholar 

  33. Serra, J. (1982): Image Analysis and Mathematical Morphology (Academic Press, London, New York)

    MATH  Google Scholar 

  34. Small, C.G. (1996): The Statistical Theory of Shape (Springer-Verlag, New York, Berlin, Heidelberg)

    MATH  Google Scholar 

  35. Soille, P. (1999): Morphological Image Analysis. Principles and Applications. (Springer-Verlag, Berlin, Heidelberg, New York)

    MATH  Google Scholar 

  36. Stoyan, D. (1998): ‘Random sets: models and statistics’. Int. Stat. Rev. 66, pp. 1–27

    Article  MATH  Google Scholar 

  37. Stoyan, D., W.S. Kendall, J. Mecke (1995): Stochastic Geometry and its Applications (J. Wiley & Sons, Chichester)

    MATH  Google Scholar 

  38. Stoyan, D., M. Schlather (2000): ‘On the random sequential adsorption model with disks of different sizes’, submitted

    Google Scholar 

  39. Stoyan, D., H. Stoyan (1986): ‘Simple stochastic models for the analysis of dislocation distributions’. Physica Stat. Sol. (a) 97, pp. 163–172

    Article  ADS  Google Scholar 

  40. Stoyan, D., H. Stoyan (1994): Fractals, Random Shapes and Point Fields (J. Wiley & Sons, Chichester)

    MATH  Google Scholar 

  41. Stoyan, D., H. Stoyan (1998): ‘Non-homogeneous Gibbs process models for forestry-a case study’. Biometrical J. 40, pp. 521–531

    Article  MATH  Google Scholar 

  42. Stoyan, D., H. Stoyan (2000): ‘Improving ratio estimators of second order point process characteristics’. Scand. J. Statist.

    Google Scholar 

  43. Thönnes, E., M.C. van Lieshout (1999): ‘A comparative study on the power of Van Lieshout and Baddeley’s J-function’. Biometrical J. 41, pp. 721–734

    Article  MATH  Google Scholar 

  44. Tomppo, E. (1986): ‘Models and methods for analysing spatial patterns of trees’. Comm. Inst. Forest. Fennicae 138, Helsinki

    Google Scholar 

  45. Wackernagel, H. (1998): Multivariate Geostatistics. 2nd edition (Springer-Verlag, Berlin-Heidelberg-New York)

    MATH  Google Scholar 

  46. Weber, H., D. Marx, K. Binder (1995): ‘Melting transition in two dimensions: A finite-size scaling analysis of bond-orientational order in hard disks’. Phys. Rev. B51, pp. 14636–14651

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stoyan, D. (2000). Basic Ideas ofSpatial Statistics. In: Mecke, K.R., Stoyan, D. (eds) Statistical Physics and Spatial Statistics. Lecture Notes in Physics, vol 554. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45043-2_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45043-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67750-5

  • Online ISBN: 978-3-540-45043-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics