Skip to main content

A Genetic Algorithm for 1,5 Dimensional Assortment Problems with Multiple Objectives

  • Conference paper
  • First Online:
Developments in Applied Artificial Intelligence (IEA/AIE 2003)

Abstract

In most studies on cutting stock problems, it is assumed that the sizes of stock materials are known and the problem is to find the best cutting pattern combinations. However, the solution efficiency of the problem depends strongly on the size of stock materials. In this study, a two-step approach is developed for a 1,5 dimensional assortment problem with multiple objectives. Cutting patterns are derived by implicit enumeration in the first step. The second step is used to determine the optimum sizes of stock materials by applying a genetic algorithm. The object is to find stock material sizes that minimize the total trim loss and also the variety of stock materials. Specialized crossover operator is developed to maintain the feasibility of the chromosomes. A real-life problem with 41 alternative stock materials, 289 order pieces and 1001 patterns is solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd EA, Reda MS, (1994), “An Interactive technique for the cutting stock problem with multiple objectives”, European Journal Of Operational Research, 78,(3) 304–317.

    Article  MATH  Google Scholar 

  2. Abel D, Gal T, (1985), “Trim loss and related problems”, International Journal of Management Science, 13,(1) 59–72.

    Google Scholar 

  3. Anand S, McCord C, Sharma R, Balachander T, (1999), “An integrated machine vision based system for solving the nonconvex cutting stock problem using genetic algorithms”, Journal Of Manufacturing Systems, 18,(6) 396–415.

    Article  Google Scholar 

  4. Antunez HJ, Kleiber M, (1996), “Sensitivity analysis of metal forming processes involving frictional contact in steady state”, Journal Of Materials Processing Technology, 60,(1–4) 485–491.

    Article  Google Scholar 

  5. Bean JC, (1994), “Genetic algorithms and random keys for sequencing and optimization”, ORSA Journal on Computing, 6,(2), 154–160.

    MATH  Google Scholar 

  6. Beasley JE, (1985), “An algorithm for the two dimensional assortment problem”, European Journal Of Operational Research, 19, 253–261.

    Article  MATH  MathSciNet  Google Scholar 

  7. Benati S, (1997), “An algorithm for a cutting stock problem on a strip”, Journal of The Operational Research Society, 48,(3) 288–294.

    Article  MATH  Google Scholar 

  8. Bennell JA, Dowsland KA, (1999), “A tabu thresholding implementation for the irregular stock cutting problem”, International Journal Of Production Research, 37(18) 4259–4275.

    Article  MATH  Google Scholar 

  9. Carnieri C, Mendoza GA, Gavinho LG, (1994), “Solution procedures for cutting lumber into furniture parts”, European Journal Of Operational Research, 73,(3) 495–501.

    Article  MATH  Google Scholar 

  10. Chauny F, Loulou R, Sadones S, Soumis F, (1987), “A Two-phase heuristic for strip packing algorithm and probabilistic analysis.”, Operations Research Letters, 6,(1) 25–33.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chauny F, Loulou R, Sadones S, Soumis F, (1991), “A Two-phase heuristic for the two-dimensional cutting-stock problem.”, Journal of The Operational Research Society, 42,(1) 39–47.

    Article  MATH  Google Scholar 

  12. Chen CLS, Hart SM, Tham WM, (1996), “A simulated annealing heuristic for the one-dimensional cutting stock problem”, European Journal Of Operational Research, 93,(3) 522–535.

    Article  MATH  Google Scholar 

  13. Cheng CH, Feiring BR, Cheng TCE, (1994), “The cutting stock problem-A survey”, International Journal of Production Economics, 36, 291–305.

    Article  Google Scholar 

  14. Chien CF, Wu WT, (1998), “A recursive computational procedure for container loading”, Computers & Industrial Engineering, 35,(1–2) 319–322.

    Article  Google Scholar 

  15. Cloud FH, (1994), “Analysis of corrugator side trim”, Tappi Journal, 77,(4) 199–205.

    Google Scholar 

  16. Cook DF, Wolfe ML, (1991), “Genetic algorithm approach to a lumber cutting optimization problem.”, Cybern. Syst., 22,(3) 357–365.

    Article  Google Scholar 

  17. Dagli CH, Tatoglu MY, (1987), “Approach to two dimensional cutting stock problems”, International Journal Of Production Research, 25,(2) 175–190.

    Article  MATH  Google Scholar 

  18. Dagli CH, Poshyanonda P, (1997), “New approaches to nesting rectangular patterns”, Journal of Intelligent Manufacturing, 8,(3) 177–190.

    Article  Google Scholar 

  19. Daniels JJ, Ghandforoush P, (1990), “An improved algorithm for the non-guillotine-constrained cutting stock problem”, Journal of The Operational Research Society, 41,(2) 141–149.

    Article  MATH  Google Scholar 

  20. Decarvalho JMV, Rodrigues AJG, (1994), A computer based interactive approach to a 2 stage cutting stock problem”, Infor, 32,(4) 243–252.

    Google Scholar 

  21. Dyckhoff H, (1990), “A typology of cutting and packing problems”, European Journal Of Operational Research, 44, 145–159.

    Article  MATH  MathSciNet  Google Scholar 

  22. Dyckhoff H, Kruse HJ, Abel D, Gal T, (1985), “Trim Loss and Related Problems”, OMEGA The International Journal of Management Science, 13,(1), 59–72.

    Article  Google Scholar 

  23. Faggioli E, Bentivoglio CA, (1998), “Heuristic and exact methods for the cutting sequencing problem”, European Journal Of Operational Research, 110,(3) 564–575.

    Article  MATH  Google Scholar 

  24. Faina L, (1999), “Application of simulated annealing to the cutting stock problem”, European Journal Of Operational Research, 114,(3) 542–556.

    Article  MATH  Google Scholar 

  25. Fan Z, Ma J, Tian P, (1997), “Algorithm for the special two-dimensional cutting problem”, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1, 404–409.

    Google Scholar 

  26. Farley AA, (1990), “Selection of stock plate characteristics and cutting style for two dimensional cutting stock situations”, European Journal Of Operational Research, 44, 239–246.

    Article  MATH  Google Scholar 

  27. Fayard D, Hifi M, Zissimopoulos V, (1998), “Efficient approach for large-scale two-dimensional guillotine cutting stock problems”, Journal of The Operational Research Society, 49,(12) 1270–1277.

    Article  MATH  Google Scholar 

  28. Foerster H, Waescher G, (1998), “Simulated annealing for order spread minimization in sequencing cutting patterns”, European Journal Of Operational Research, 110,(2) 272–281.

    Article  MATH  Google Scholar 

  29. Gemmill DD, Sanders JL, (1990), “Approximate solutions for the cutting stock ‘portfolio’ problem”, European Journal Of Operational Research, 44, 167–174.

    Article  MATH  Google Scholar 

  30. Gen M, Cheng R, (1997), Genetic Algorithms and Engineering Design, John Wiley&Sons, NY.

    Google Scholar 

  31. Gochet W, Vandebroek M, (1989), “A dynamic programming based heuristic for industrial buying of cardboard”, European Journal Of Operational Research, 38, 104–112.

    Article  MATH  Google Scholar 

  32. Goldberg DE, (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, USA.

    MATH  Google Scholar 

  33. Goulimis C, (1990), “Optimal solutions for the cutting stock problem”, European Journal Of Operational Research, 44, 197–208.

    Article  MATH  Google Scholar 

  34. Haessler RW, Sweeney PE, (1991), “Cutting stock problems and solution procedures.”, European Journal Of Operational Research, 54,(2) 141–150.

    Article  MATH  Google Scholar 

  35. Han GC, Na SJ, (1994), “Multi-stage solution for nesting in two-dimensional cutting problems using neural networks”, Welding in the World, Le Soudage Dans Le Monde, 34, 409–410.

    Google Scholar 

  36. Han GC, Na SJ, (1996), “Two-stage approach for nesting in two-dimensional cutting problems using neural network and simulated annealing”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 210,(B6) 509–519.

    Article  Google Scholar 

  37. Hifi M, (1997a), “An improvement of Viswanathan and Bagchi’s exact algorithm for constrained two-dimensional cutting stock”, Computers & Operations Research, 24,(8) 727–736.

    Article  MATH  MathSciNet  Google Scholar 

  38. Hifi M, (1997b), “The DH/KD algorithm: A hybrid approach for unconstrained two-dimensional cutting problems”, European Journal Of Operational Research, 97,(1) 41–52.

    Article  MATH  Google Scholar 

  39. Hifi M, Ouafi R, (1997), “Best-first search and dynamic programming methods for cutting problems: The cases of one or more stock plates”, Computers & Industrial Engineering, 32,(1) 187–205.

    Article  Google Scholar 

  40. Hifi M; Zissimopoulos V, (1996), “Recursive exact algorithm for weighted two-dimensional cutting”, European Journal Of Operational Research, 91,(3) 553–564.

    Article  MATH  Google Scholar 

  41. Ismail HS, Hon KKB, (1995), “Nesting of two-dimensional shapes using genetic algorithms”, Proceedings of the Institution of Mechanical Engineers, Part-B: Journal of Engineering Manufacture, 209,(B2) 115–124.

    Article  Google Scholar 

  42. John AG, (1992), “A method for solving container packing for a single size of box”, Journal of the Operational Research Society, 43,(4) 307–312.

    MATH  Google Scholar 

  43. Johnson MP, Rennick C, Zak E, (1997), “Skiving addition to the cutting stock problem in the paper industry”, Siam Review, 39,(3) 472–483.

    Article  MATH  MathSciNet  Google Scholar 

  44. Klempous R, Kotowski J, Szlachcic E, (1996), “Interactive procedures in large-scale two-dimensional cutting stock problems”, Journal Of Computational And Applied Mathematics, 66,(1–2) 323–331.

    Article  MATH  MathSciNet  Google Scholar 

  45. Krichagina EV, Rubio R, Taksar MI, Wein LM, (1998), “A dynamic stochastic stock-cutting problem”, Operations Research, 46,(5) 690–701.

    MATH  Google Scholar 

  46. Lai KK, Chan JWM, (1997a), “Developing a simulated annealing algorithm for the cutting stock problem”, Computers & Industrial Engineering, 32,(1) 115–127.

    Article  Google Scholar 

  47. Lai KK, Chan WM, (1997b), “An evolutionary algorithm for the rectangular cutting stock problem”, International Journal of Industrial Engineering-Applications And Practice, 4,(2) 130–139.

    Google Scholar 

  48. Lefrancois P, Gascon A, (1995), “Solving a one dimensional cutting stock problem in a small manufacturing firm-A case study”, IIE Transactions, 27,(4) 483–496.

    Article  Google Scholar 

  49. Li S, (1996), “Multi-job cutting stock problem with due dates and release dates”, Journal of The Operational Research Society, 47,(4) 490–510.

    Article  MATH  Google Scholar 

  50. MacLeod B, Moll R, Girkar M, Hanifi N, (1993), “An algorithm for the 2D guillotine cutting stock problem”, European Journal Of Operational Research, 68,(3) 400–412.

    Article  MATH  Google Scholar 

  51. Madsen OBG, (1988), “Application of travelling salesman routinesto solve pattern allocation problems in the glass industry”, Journal of The Operational Research Society, 39,(3) 249–256.

    Article  MATH  Google Scholar 

  52. Morabito R, Arenales MN, (1995), Performance of 2 heuristics for solving large scale 2 dimensional guillotine cutting problems”, Infor, 33,(2) 145–155.

    MATH  Google Scholar 

  53. Morabito R, Arenales MN, (1996), “Staged and constrained two-dimensional guillotine cutting problems: An AND/OR-graph approach”, European Journal Of Operational Research, 94,(3) 548–560.

    Article  MATH  Google Scholar 

  54. Morabito R, Garcia V, (1998), “The cutting stock problem in a hardboard industry: A case study”, Computers & Operations Research, 25,(6) 469–485.

    Article  MATH  Google Scholar 

  55. Morabito RN, Arenales MN, Arcaro VF, (1992), “And-or-graph approach for two-dimensional cutting problems.”, European Journal Of Operational Research, 58,(2) 263–271.

    Article  MATH  Google Scholar 

  56. Noans SL, Thortenson A, (2000), “A combined cutting stock and lot sizing problem”, European Journal Of Operational Research, 120,(2) 327–342.

    Article  MathSciNet  Google Scholar 

  57. Olovsson L, Nilsson L, Simonsson K, (1999), “An ALE formulation for the solution of two-dimensional metal cutting problems”, Computers & Structures, 72,(4–5) 497–507.

    Article  MATH  Google Scholar 

  58. Parada V, Sepulveda M, Solar M, Gomes A, (1998), “Solution for the constrained guillotine cutting problem by simulated annealing”, Computers & Operations Research, 25,(1) 37–47.

    Article  MATH  Google Scholar 

  59. Pentico DW, (1988), “The discrete two dimensional assortment problem”, Operations Research, 36,(2) 324–332.

    MATH  MathSciNet  Google Scholar 

  60. Rahmani AT, Ono N, (1995), “Evolutionary approach to two-dimensional guillotine cutting problem”, Proceedings of the IEEE Conference on Evolutionary Computation, 1.

    Google Scholar 

  61. Rinnooy KAHG, De Wit JR, Wijmenga RTh, (1987), “Nonorthogonal two dimensional cutting patterns”, Management Sci., 33,(5) 670–684.

    Article  MATH  MathSciNet  Google Scholar 

  62. Savsar M, Cogun C, (1994), “Analysis and modeling of a production line in a corrigated box factory”, International Journal Of Production Research, 32,(7) 1571–1589.

    Article  MATH  Google Scholar 

  63. Scheithauer G, Sommerweiss U, (1998), “4-block heuristic for the rectangle packing problem”, European Journal Of Operational Research, 108,(3) 509–526.

    Article  MATH  Google Scholar 

  64. Schultz TA, (1995), “Application of linear programming in a Gauze splitting operation”, Operations Research, 43,(5) 752–757.

    MATH  Google Scholar 

  65. Sinuanystern Z, Weiner I, (1994), The one dimensional cutting stock problem using 2 objectives”, Journal of The Operational Research Society, 45,(2) 231–236.

    Article  Google Scholar 

  66. Sumichrast RT, (1986), “New cutting stock heuristic for scheduling production”, Computers & Operations Research, 13,(4) 403–410.

    Article  Google Scholar 

  67. Sweeney PE, Paternoster ER, (1992), “Cutting and packing problems: A categorized, application-orientated research bibliography”, Journal of the Operational Research Society, 43,(7) 691–706.

    Article  MATH  Google Scholar 

  68. Vahrenkamp R, (1996), “Random search in the one-dimensional cutting stock problem”, European Journal Of Operational Research, 95,(1) 191–200.

    Article  MATH  Google Scholar 

  69. Van DWA, (1995), “UGC: an algorithm for two-stage unconstrained guillotine cutting”, European Journal Of Operational Research, 84,(2) 494–498.

    Article  MATH  Google Scholar 

  70. Vance PH, (1998), “Branch and price algorithms for the one-dimensional cutting stock problem”, Computational Optimization And Applications, 9,(3) 211–228.

    Article  MATH  MathSciNet  Google Scholar 

  71. Vasko FJ, (1989), “A computational improvement to Wang’s Two-dimensional cutting stock algorithm”, Computers & Industrial Engineering, 16,(1) 109–115.

    Article  MathSciNet  Google Scholar 

  72. Vasko FJ, Cregger ML, Newhart DD, Stott KL, (1993), “A Real time one dimensional cutting stock algorithm for balanced cutting patterns”, Operations Research Letters, 14,(5) 275–282.

    Article  MATH  Google Scholar 

  73. Vasko FJ, Wolf FE, (1989), “Practical solution to a fuzzy two-dimensional cutting stock problem.”, Fuzzy Sets Syst., 29,(3) 259–275.

    Article  MathSciNet  Google Scholar 

  74. Vasko FJ, Wolf FE, Stott KL, (1994), “A Pratical Approach for Determining Rectangular stock size”, Journal of The Operational Research Society, 45,(3) 281–286.

    Article  MATH  Google Scholar 

  75. Viswanathan KV, Bagchi A, (1993), “Best-first search methods for constrained two-dimensional cutting stock problems”, Operations Research, 41,(4) 768–776.

    MATH  Google Scholar 

  76. Wascher G, Gau T, (1996), “Heuristics for the integer one-dimensional cutting stock problem: A computational study”, Or Spektrum, 18,(3) 131–144.

    Article  Google Scholar 

  77. Westerlund T, Isaksson J, Harjunkoski L, (1998), “Solving a two-dimensional trim-loss problem with MILP”, European Journal Of Operational Research, 104,(3) 572–581.

    Article  MATH  Google Scholar 

  78. Yanasse HH, Zinober ASI, Harris RG, (1991), “Two-dimensional Cutting Stock with Multiple Stock Size”, Journal of The Operational Research Society, 42,(8) 673–683.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saraç, T., Özdemir, M.S. (2003). A Genetic Algorithm for 1,5 Dimensional Assortment Problems with Multiple Objectives. In: Chung, P.W.H., Hinde, C., Ali, M. (eds) Developments in Applied Artificial Intelligence. IEA/AIE 2003. Lecture Notes in Computer Science(), vol 2718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45034-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45034-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40455-2

  • Online ISBN: 978-3-540-45034-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics