Skip to main content

Self-Stabilizing Algorithms for {k}-Domination

  • Conference paper
  • First Online:
Self-Stabilizing Systems (SSS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2704))

Included in the following conference series:

Abstract

In the self-stabilizing algorithmic paradigm for distributed computing each node has only a local view of the system, yet in a finite amount of time the system converges to a global state, satisfying some desired property. A function f : V (G) → {0, 1, 2, . . . , k} is a {k}-dominating function if Σ jεN[i] f(j) ≥ k for all i ε V (G). In this paper we present self-stabilizing algorithms for finding a minimal {k}-dominating function in an arbitrary graph. Our first algorithm covers the general case, where k is arbitrary. This algorithm requires an exponential number of moves, however we believe that its scheme is interesting on its own, because it can insure that when a node moves, its neighbors hold correct values in their variables. For the case that k = 2 we propose a linear time self-stabilizing algorithm.

Supported by the IST Program of the EU under contract numbers IST-1999-14186 (ALCOM-FT) and IST-2001-33116 (FLAGS).

Research supported in part by NSF Grant CCR-0222648.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Beauquier, A.K. Datta, M. Gradinariu, and F. Magniette. Self-stabilizing local mutual exclusion and daemon refinement. In DISC00 Distributed Computing 14th International Symposium, Springer LNCS: 1914, pages 223–237, 2000. 50

    Google Scholar 

  2. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM, 17:643–644, 1974. 50

    Article  MATH  Google Scholar 

  3. S. Dolev. Self-stabilization. MIT Press, 2000. 50

    Google Scholar 

  4. G. S. Domke. Variations of Colorings, Coverings, and Packings of Graphs. PhD thesis, Clemson University, 1988. 50

    Google Scholar 

  5. G. S. Domke, S.T. Hedetniemi, R.C. Laskar, and G. Fricke. Relationships between integer and fractional parameters of graphs. In Y. Alavi, G. Chartrand, O. R. Ollermann, and A. J. Schwenk, editors, Graph Theory, Combinatorics, and Applications, Proceedings of the Sixth Quadrennial Conference on the Theory and Applications of Graphs (Kalamazoo, MI, 1988), volume 2, pages 371–387. Wiley, 1991. 50

    Google Scholar 

  6. M. Gairing, R.M. Geist, S.T. Hedetniemi, and P. Kristiansen. A self-stabilizing algorithm for maximal 2-packing. Technical Report 230, Department of Informatics, University of Bergen, 2002. 52

    Google Scholar 

  7. W. Goddard, S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani. A self-stabilizing distributed algorithm for minimal total domination in an arbitrary system graph. In Proceedings of the 8th International Workshop on Formal Methods for Parallel Programming: Theory and Applications (FMPPTA’03) in conjunction with IPDPS’03, 2003. 59

    Google Scholar 

  8. T.W. Haynes, S.T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, 1998. 50

    Google Scholar 

  9. S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani. Self-stabilizing algorithm for minimal dominating and maximal independent sets. Comput. Math. Appl., to appear. 56

    Google Scholar 

  10. S. T. Hedetniemi, D.P. Jacobs, and P.K. Srimani. Maximal matching stabilizes in time O(m). Information Processing Letters, to appear. 50

    Google Scholar 

  11. Su-Chu Hsu and Shing-Tsaan Huang. A self-stabilizing algorithm for maximal matching. Information Processing Letters, 43(2):77–81, 1992. 50

    Article  MATH  MathSciNet  Google Scholar 

  12. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thathcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press, New York, 1972. 51

    Google Scholar 

  13. G. Tel. Maximal matching stabilizes in quadratic time. Information Processing Letters, 49(6):271–272, 1994. 50

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Tel. Introduction to distributed algorithms. Cambridge University Press, second edition, 2000. 50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gairing, M., Hedetniemi, S.T., Kristiansen, P., McRae, A.A. (2003). Self-Stabilizing Algorithms for {k}-Domination. In: Huang, ST., Herman, T. (eds) Self-Stabilizing Systems. SSS 2003. Lecture Notes in Computer Science, vol 2704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45032-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45032-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40453-8

  • Online ISBN: 978-3-540-45032-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics