Skip to main content

Self-Stabilizing Pulse Synchronization Inspired by Biological Pacemaker Networks

  • Conference paper
  • First Online:
Book cover Self-Stabilizing Systems (SSS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2704))

Included in the following conference series:

Abstract

We define the “Pulse Synchronization” problem that requires nodes to achieve tight synchronization of regular pulse events, in the settings of distributed computing systems. Pulse-coupled synchronization is a phenomenon displayed by a large variety of biological systems, typically overcoming a high level of noise. Inspired by such biological models, a robust and self-stabilizing pulse synchronization algorithm for distributed computer systems is presented. The algorithm attains near optimal synchronization tightness while tolerating up to a third of the nodes exhibiting Byzantine behavior concurrently. We propose that pulse synchronization algorithms can be suitable for a variety of distributed tasks that require tight synchronization but which can tolerate a bound variation in the regularity of the synchronized pulse invocations.

This research was supported in part by Intel COMM Grant — Internet Network/Transport Layer & QoS Environment (IXA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arora, S. Dolev, and M.G. Gouda, “Maintaining digital clocks in step”, Parallel Processing Letters, 1:11–18, 1991. 34

    Article  Google Scholar 

  2. G. E. Andrews, “The Theory of Partitions”, Encyclopedia of Mathematics and Its Applications, Vol. 2, Addison-Wesley, Reading, MA, 1976.

    Google Scholar 

  3. J. Brzezinski, and M. Szychowiak, “Self-Stabilization in Distributed Systems-a Short Survey, Foundations of Computing and Decision Sciences, 25(1), 2000. 34

    Google Scholar 

  4. J. Buck, and E. Buck, “Synchronous fireflies”, Scientific American, Vol. 234, pp. 74–85, May 1976. 32

    Article  Google Scholar 

  5. A. Daliot, D. Dolev, H. Parnas, “Self-Stabilizing Pulse Synchronization Inspired by Biological Pacemaker Networks Technical Report TR2003-1, Schools of Engineering and Computer Science, The Hebrew University of Jerusalem, March 2003. http://leibnitz.cs.huji.ac.il/tr/acc/2003/HUJI-CE-LTR-2003-1_pulse-tr6.ps 38, 40

  6. D. Dolev, J. Halpern, and H. R. Strong, “On the Possibility and Impossibility of Achieving Clock Synchronization”, J. of Computer and Systems Science, Vol. 32:2, pp. 230–250, 1986. 41

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Dolev, J. Y. Halpern, B. Simons, and R. Strong, “Dynamic Fault-Tolerant Clock Synchronization”, J. Assoc. Computing Machinery, Vol. 42, No.1, pp. 143–185, Jan. 1995. 33, 34, 41, 42

    MATH  Google Scholar 

  8. D. Dolev, N. A. Lynch, E. Stark, W. E. Weihl and S. Pinter, “Reaching Approximate Agreement in the Presence of Faults, Journal of the ACM, 33 (1986). 43

    Google Scholar 

  9. S. Dolev, “Self-Stabilization,” The MIT Press, 2000. 41

    Google Scholar 

  10. S. Dolev, and J. L. Welch, “Self-Stabilizing Clock Synchronization in the presence of Byzantine faults”, Proc. Of the Second Workshop on Self-Stabilizing Systems, pp. 9.1–9.12, 1995. 34, 41, 42

    Google Scholar 

  11. S Dolev and JL Welch, “Wait-free clock synchronization”, Algorithmica, 18(4):486–511, 1997. 34

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Fetzer and F. Cristian, “An Optimal Internal Clock Synchronization Algorithm”, Proceedings of the 10th Conference on Computer Assurance, 1995, pp. 187–196, Gaithersburg, MD, USA. 33

    Google Scholar 

  13. W. O. Friesen, “Physiological anatomy and burst pattern in the cardiac ganglion of the spiny lobster Panulirus interuptus”, J. Comp. Physiol., Vol. 101, 1975. 32

    Google Scholar 

  14. W. O. Friesen, “Synaptic interaction in the cardiac ganglion of the spiny lobster Panulirus interuptus”, J. Comp. Physiol., Vol. 101, pp. 191–205, 1975. 32

    Article  Google Scholar 

  15. M. J. Fischer, N. A. Lynch and M. Merritt, “Easy impossibility proofs for distributed consensus problems”, Distributed Computing, Vol. 1, pp. 26–39, 1986. 41

    Article  MATH  Google Scholar 

  16. T. Herman, “Phase clocks for transient fault repair”, IEEE Transactions on Parallel and Distributed Systems, 11(10):1048–1057, 2000.

    Article  Google Scholar 

  17. T. Herman and S. Ghosh, “Stabilizing Phase-Clocks”, Information Processing Letters, 5(6):585–598, 1994. 34

    Google Scholar 

  18. B. Liskov, “Practical Use of Synchronized Clocks in Distributed Systems”, PODC 10, 1991, pp. 1–9. 33

    Google Scholar 

  19. J. Lundelius, and N. Lynch, “An Upper and Lower Bound for Clock Synchronization,” Information and Control, Vol. 62, pp. 190–205, Aug/Sep. 1984. 42

    Article  MATH  MathSciNet  Google Scholar 

  20. N. Lynch, “Distributed Algorithms”, Morgan Kaufmann, 1996. 41

    Google Scholar 

  21. R. Mathar and J. Mattfeldt, “Pulse-coupled decentral synchronization”, SIAM J. Appl. Math, Vol. 56, No. 4, pp. 1094–1106, Aug. 1996. 44

    Article  MATH  MathSciNet  Google Scholar 

  22. R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled biological oscillators”, SIAM J. Appl. Math, Vol. 50, pp. 1645–1662, 1990. 33

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Patt-Shamir, “A Theory of Clock Synchronization, Doctoral thesis, MIT, Oct. 1994. 33

    Google Scholar 

  24. Z. Nèda, E. Ravasz, Y. Brechet, T. Vicsek, and A.-L. Barabàsi, “Self-organizing process: The sound of many hands clapping”, Nature, 403, pp. 849–850, 2000. 32

    Article  Google Scholar 

  25. F. Schneider, “Understanding Protocols for Byzantine Clock Synchronization”, Technical Report 87-859, Dept. of Computer Science, Cornell University, 1987. 33

    Google Scholar 

  26. E. Sivan, H. Parnas and D. Dolev, “Fault tolerance in the cardiac ganglion of the lobster”, Biol. Cybern., Vol. 81, pp. 11–23, 1999. 32, 33

    Article  MATH  Google Scholar 

  27. S. H. Strogatz and I. Stewart, “Coupled Oscillators and Biological Synchronization”, Scientific American, Vol. 269, pp. 102–109, Dec. 1993 32

    Article  Google Scholar 

  28. A. S. Tanenbaum, “Computer Networks 3rd ed.”, Prentice Hall International. 4s4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daliot, A., Dolev, D., Parnas, H. (2003). Self-Stabilizing Pulse Synchronization Inspired by Biological Pacemaker Networks. In: Huang, ST., Herman, T. (eds) Self-Stabilizing Systems. SSS 2003. Lecture Notes in Computer Science, vol 2704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45032-7_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45032-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40453-8

  • Online ISBN: 978-3-540-45032-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics