Advertisement

A Learning Classifier Systems Bibliography

  • Tim Kovacs
  • Pier Luca Lanzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1813)

Abstract

We present a bibliography of all works we could find on Learning Classifier Systems (LCS) — the genetics-based machine learning systems introduced by John Holland. With over 400 entries, this is at present the largest bibliography on classifier systems in existence. We include a list of LCS resources on the world wide web.

Keywords

Genetic Algorithm Genetic Program Reinforcement Learning Adaptive Behavior Evolutionary Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Emergent Computation. Proceedings of the Ninth Annual International Conference of the Center for Nonlinear Studies on Self-organizing, Collective, and Cooperative Phenomena in Natural and Artificial Computing Networks. A special issue of Physica D. Stephanie Forrest (Ed.), 1989.Google Scholar
  2. 2.
    Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS92), 1992. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  3. 3.
    Jose L. Aguilar and Mariela Cerrada. Reliability-Centered Maintenance Methodology-Based Fuzzy Classifier System Design for Fault Tolerance. In Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: Koza San Francisco, CA, 1998 Koza et al. [262], page 621. One page paper.Google Scholar
  4. 4.
    Manu Ahluwalia and Larry Bull. A Genetic Programming-based Classifier System. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 11–18.Google Scholar
  5. 5.
    Rudolf F. Albrecht, Nigel C. Steele, and Colin R. Reeves, editors. Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. Spring-Verlag, 1993.Google Scholar
  6. 6.
    Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Zalzala, editors. Proceedings of the 1999 Congress on Evolutionary Computation CEC99, Washington (DC), 1999. IEEE Press.Google Scholar
  7. 7.
    W. Brian Arthur, John H. Holland, Blake LeBaron, Richard Palmer, and Paul Talyer. Asset Pricing Under Endogenous Expectations in an Artificial Stock Market. Technical report, Santa Fe Institute, 1996. This is the original version of LeBaron1999a.Google Scholar
  8. 8.
    Thomas Bäck, editor. Proceedings of the 7th International Conference on Genetic Algorithms (ICGA97). Morgan Kaufmann: San Francisco CA, 1997.Google Scholar
  9. 9.
    Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook of Evolutionary Computation. Institute of Physics Publishing and Oxford University Press, 1997. http://www.iop.org/Books/Catalogue/.
  10. 10.
    Thomas Bäck, Ulrich Hammel, and Hans-Paul Schwefel. Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3–17, 1997.CrossRefGoogle Scholar
  11. 11.
    N. R. Ball. Towards the Development of Cognitive Maps in Classifier Systems. In Nigel C. Steele, and Colin R. Reeves, editors. Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. Spring-Verlag, 1993 Albrecht et al. [5], pages 712–718.Google Scholar
  12. 12.
    Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999.Google Scholar
  13. 13.
    Alwyn Barry. The Emergence of High Level Structure in Classifier Systems-A Proposal. Irish Jounral of Psychology, 14(3):480–498, 1993.Google Scholar
  14. 14.
    Alwyn Barry. Hierarchy Formulation Within Classifiers System — A Review. In V. L. Uskov, and W. F. Punch, editors. Proceedings of the First International Conference on Evolutionary Algorithms and their Application EVCA’96, Moscow, 1996. The Presidium of the Russian Academy of Sciences Goodman et al. [198], pages 195–211.Google Scholar
  15. 15.
    Alwyn Barry. Aliasing in XCS and the Consecutive State Problem: 1 — Effects. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 19–26.Google Scholar
  16. 16.
    Alwyn Barry. Aliasing in XCS and the Consecutive State Problem: 2 — Solutions. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 27–34.Google Scholar
  17. 17.
    Richard J. Bauer. Genetic Algorithms and Investment Strategies. Wiley Finance Editions. John Wiley & Sons, 1994.Google Scholar
  18. 18.
    Richard K. Belew and Stephanie Forrest. Learning and Programming in Classifier Systems. Machine Learning, 3:193–223, 1988.Google Scholar
  19. 19.
    Richard K. Belew and Michael Gherrity. Back Propagation for the Classifier System. In Schaffer [354], pages 275–281.Google Scholar
  20. 20.
    Hugues Bersini and Francisco J. Varela. Hints for Adaptive Problem Solving Gleaned From Immune Networks. In Reinhard Männer, editors. Parallel Problem Solving from Nature: Proceedings of the First International Workshop. Dortmund, FRG, 1–3 Oct 1990, number 496 in Lecture Notes in Computer Science, Heidelberg, 1990. Springer Schwefel and Männer [358], pages 343–354.CrossRefGoogle Scholar
  21. 21.
    Janine Beunings, Ludwig Bölkow, Bernd Heydemann, Biruta Kresling, Claus-Peter Lieckfeld, Claus Mattheck, Werner Nachtigall, Josef Reichholf, Bertram J. Schmidt, Veronika Straaß, and Reinhard Witt. Bionik: Natur als Vorbild. WWF Dokumentationen. PRO FUTURA Verlag, München, 1993.Google Scholar
  22. 22.
    J. Biondi. Robustness and evolution in an adaptive system application on classification task. In Nigel C. Steele, and Colin R. Reeves, editors. Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. Spring-Verlag, 1993 Albrecht et al. [5], pages 463–470.Google Scholar
  23. 23.
    Andrea Bonarini. ELF: Learning Incomplete Fuzzy Rule Sets for an Autonomous Robot. In Hans-Jürgen Zimmermann, editor, First European Congress on Fuzzy and Intelligent Technologies — EUFIT’93, volume 1, pages 69–75, Aachen, D, September 1993. Verlag der Augustinus Buchhandlung.Google Scholar
  24. 24.
    Andrea Bonarini. Evolutionary Learning of General Fuzzy Rules with Biased Evaluation Functions: Competition and Cooperation. Proc. 1st IEEE Conf. on Evolutionary Computation, pages 51–56, 1994.Google Scholar
  25. 25.
    Andrea Bonarini. Learning Behaviors Represented as Fuzzy Logic Controllers. In Hans Jürgen Zimmermann, editor, Second European Congress on Intelligent Techniques and Soft Computing-EUFIT’94, volume 2, pages 710–715, Aachen, D, 1994. Verlag der Augustinus Buchhandlung.Google Scholar
  26. 26.
    Andrea Bonarini. Extending Q-learning to Fuzzy Classifier Systems. In Marco Gori and Giovanni Soda, editors, Proceedings of the Italian Association for Artificial Intelligence on Topics in Artificial Intelligence, volume 992 of LNAI, pages 25–36, Berlin, 1995. Springer.Google Scholar
  27. 27.
    Andrea Bonarini. Delayed Reinforcement, Fuzzy Q-Learning and Fuzzy Logic Controllers. In J. L. Verdegay, editors. Genetic Algorithms and Soft Computing, (Studies in Fuzziness, 8). Physica-Verlag, Berlin, 1996 Herrera and Verdegay [218], pages 447–466.Google Scholar
  28. 28.
    Andrea Bonarini. Delayed Reinforcement, Fuzzy Q-Learning and Fuzzy Logic Controllers. In F. Herrera and J. L. Verdegay, editors, Genetic Algorithms and Soft Computing, (Studies in Fuzziness, 8), pages 447–466, Berlin, D, 1996. Physica-Verlag.Google Scholar
  29. 29.
    Andrea Bonarini. Evolutionary Learning of Fuzzy rules: competition and cooperation. In W. Pedrycz, editor, Fuzzy Modelling: Paradigms and Practice, pages 265–284. Norwell, MA: Kluwer Academic Press, 1996. ftp://ftp.elet.polimi.it/pub/Andrea.Bonarini/ELF/ELF-Pedrycz.ps.gz.Google Scholar
  30. 30.
    Andrea Bonarini. Anytime learning and adaptation of fuzzy logic behaviors. Adaptive Behavior Journal, 5(3–4):281–315, 1997.CrossRefGoogle Scholar
  31. 31.
    Andrea Bonarini. Reinforcement Distribution to Fuzzy Classifiers. In Proceedings of the IEEE World Congress on Computational Intelligence (WCCI) — Evolutionary Computation, pages 51–56. IEEE Computer Press, 1998.Google Scholar
  32. 32.
    Andrea Bonarini. Comparing reinforcement learning algorithms applied to crisp and fuzzy learning classifier systems. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 52–59.Google Scholar
  33. 33.
    Andrea Bonarini and Filippo Basso. Learning to compose fuzzy behaviors for autonomous agents. Int. Journal of Approximate Reasoning, 17(4):409–432, 1997.zbMATHCrossRefGoogle Scholar
  34. 34.
    Andrea Bonarini, Marco Dorigo, V. Maniezzo, and D. Sorrenti. AutonoMouse: An Experiment in Grounded Behaviors. In Proceedings of GAA91 — Second Italian Workshop on Machine Learning, Bari, Italy, 1991.Google Scholar
  35. 35.
    Pierre Bonelli and Alexandre Parodi. An Efficient Classifier System and its Experimental Comparison with two Representative learning methods on three medical domains. In Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991 Booker and Belew [44], pages 288–295.Google Scholar
  36. 36.
    Pierre Bonelli, Alexandre Parodi, Sandip Sen, and Stewart W. Wilson. NEWBOOLE: A Fast GBML System. In International Conference on Machine Learning, pages 153–159, San Mateo, California, 1990. Morgan Kaufmann.Google Scholar
  37. 37.
    Lashon B. Booker. Intelligent Behavior as an Adaptation to the Task Environment. PhD thesis, The University of Michigan, 1982.Google Scholar
  38. 38.
    Lashon B. Booker. Improving the performance of genetic algorithms in classifier systems. In Grefenstette [200], pages 80–92.Google Scholar
  39. 39.
    Lashon B. Booker. Classifier Systems that Learn Internal World Models. Machine Learning, 3:161–192, 1988.Google Scholar
  40. 40.
    Lashon B. Booker. Triggered rule discovery in classifier systems. In Schaffer [354], pages 265–274.Google Scholar
  41. 41.
    Lashon B. Booker. Instinct as an Inductive Bias for Learning Behavioral Sequences. In S. W. Wilson, editors. From Animals to Animats 1. Proceedings of the First International Conference on Simulation of Adaptive Behavior (SAB90). A Bradford Book. MIT Press, 1990 Meyer and Wilson [291], pages 230–237.Google Scholar
  42. 42.
    Lashon B. Booker. Representing Attribute-Based Concepts in a Classifier System. In Rawlins [318], pages 115–127.Google Scholar
  43. 43.
    Lashon B. Booker. Viewing Classifier Systems as an Integrated Architecture. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  44. 44.
    Lashon B. Booker and Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991.Google Scholar
  45. 45.
    Lashon B. Booker, David E. Goldberg, and John H. Holland. Classifier Systems and Genetic Algorithms. Artificial Intelligence, 40:235–282, 1989.CrossRefGoogle Scholar
  46. 46.
    Lashon B. Booker, Rick L. Riolo, and John H. Holland. Learning and Representation in Classifier Systems. In Vassant Honavar and Leonard Uhr, editors, Artificial Intelligence and Neural Networks, pages 581–613. Academic Press, 1994.Google Scholar
  47. 47.
    H. Brown Cribbs III and Robert E. Smith. Classifier System Renaissance: New Analogies, New Directions. In David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors. Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, 1996. MIT Press Koza et al. [264], pages 547–552.Google Scholar
  48. 48.
    Will Browne. The Development of an Industrial Learning Classifier System for Application to a Steel Hot Strip Mill. PhD thesis, University of Wales, Cardiff, 1999.Google Scholar
  49. 49.
    Will Browne, Karen Holford, and Carolynne Moore. An Industry Based Development of the Learning Classifier System Technique. Submitted to: 4th International Conference on Adaptive Computing in Design and Manufacturing (ACDM 2000).Google Scholar
  50. 50.
    Will Browne, Karen Holford, Carolynne Moore, and John Bullock. The implementation of a learning classifier system for parameter identification by signal processing of data from steel strip downcoilers. In A. T. Augousti, editor, Software in Measurement. IEE Computer and Control Division, 1996.Google Scholar
  51. 51.
    Will Browne, Karen Holford, Carolynne Moore, and John Bullock. A Practical Application of a Learning Classifier System for Downcoiler Decision Support in a Steel Hot Strip Mill. Ironmaking and Steelmaking, 25(1):33–41, 1997. Engineering Doctorate Seminar’ 97. Swansea, Wales, Sept. 2nd, 1997.Google Scholar
  52. 52.
    Will Browne, Karen Holford, Carolynne Moore, and John Bullock. A Practical Application of a Learning Classifier System in a Steel Hot Strip Mill. In Nigel C. Steele, and Rudolf F. Albrecht, editors. Artificial Neural Networks and Genetic Algorithms. Springer, 1997 Smith et al. [372], pages 611–614.Google Scholar
  53. 53.
    Will Browne, Karen Holford, Carolynne Moore, and John Bullock. An Industrial Learning Classifier System: The Importance of Pre-Processing Real Data and Choice of Alphabet. To appear in: Engineering Applications of Artificial Intelligence, 1999.Google Scholar
  54. 54.
    Bryan G. Spohn and Philip H. Crowley. Complexity of Strategies and the Evolution of Cooperation. In Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1997: Proceedings of the Second Annual Conference. Morgan Kaufmann: San Francisco, CA, 1997 Koza et al. [263], pages 521–528.Google Scholar
  55. 55.
    Larry Bull. Artificial Symbiology: evolution in cooperative multi-agent environments. PhD thesis, University of the West of England, 1995.Google Scholar
  56. 56.
    Larry Bull. Artificial Symbiogenesis. Artificial Life, 2(3):269–292, 1996.CrossRefGoogle Scholar
  57. 57.
    Larry Bull. On ZCS in Multi-agent Environments. Lecture Notes in Computer Science, 1498:471–480, 1998.CrossRefGoogle Scholar
  58. 58.
    Larry Bull. On Evolving Social Systems. Computational and Mathematical Organization Theory, 5(3):281–298, 1999.zbMATHCrossRefGoogle Scholar
  59. 59.
    Larry Bull. On using ZCS in a Simulated Continuous Double-Auction Market. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 83–90.Google Scholar
  60. 60.
    Larry Bull and Terence C. Fogarty. Coevolving Communicating Classifier Systems for Tracking. In Nigel C. Steele, and Colin R. Reeves, editors. Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. Spring-Verlag, 1993 Albrecht et al. [5], pages 522–527.Google Scholar
  61. 61.
    Larry Bull and Terence C. Fogarty. Evolving Cooperative Communicating Classifier Systems. In A. V. Sebald and L. J. Fogel, editors, Proceedings of the Third Annual Conference on Evolutionary Programming, pages 308–315, 1994.Google Scholar
  62. 62.
    Larry Bull and Terence C. Fogarty. Parallel Evolution of Communcating Classifier Systems. In Proceedings of the 1994 IEEE Conference on Evolutionary Computing, pages 680–685. IEEE, 1994.Google Scholar
  63. 63.
    Larry Bull and Terence C. Fogarty. Evolutionary Computing in Cooperative Multi-Agent Systems. In Sandip Sen, editor, Proceedings of the 1996 AAAI Symposium on Adaptation, Coevolution and Learning in Multi-Agent Systems, pages 22–27. AAAI, 1996.Google Scholar
  64. 64.
    Larry Bull and Terence C. Fogarty. Evolutionary Computing in Multi-Agent Environments: Speciation and Symbiogenesis. In H-M. Voigt, W. Ebeling, I. Rechenberg, and H-P. Schwefel, editors, Parallel Problem Solving from Nature — PPSN IV, pages 12–21. Springer-Verlag, 1996.Google Scholar
  65. 65.
    Larry Bull, Terence C. Fogarty, S. Mikami, and J. G. Thomas. Adaptive Gait Acquisition using Multi-agent Learning for Wall Climbing Robots. In Automation and Robotics in Construction XII, pages 80–86, 1995.Google Scholar
  66. 66.
    Larry Bull, Terence C. Fogarty, and M. Snaith. Evolution in Multi-agent Systems: Evolving Communicating Classifier Systems for Gait in a Quadrupedal Robot. In Eshelman [148], pages 382–388.Google Scholar
  67. 67.
    Larry Bull and O. Holland. Internal and External Representations: A Comparison in Evolving the Ability to Count. In Proceedings of the First Annual Society for the Study of Artificial Intelligence and Simulated Behaviour Robotics Workshop, pages 11–14, 1994.Google Scholar
  68. 68.
    Martin Butz, David E. Goldberg, and Wolfgang Stolzmann. New challenges for an ACS: Hard problems and possible solutions. Technical Report 99019, University of Illinois at Urbana-Champaign, Urbana, IL, October 1999.Google Scholar
  69. 69.
    C. L. Ramsey and John J. Grefenstette. Case-based initialization of genetic algorithms. In Forrest [173], pages 84–91. http://www.ib3.gmu.edu/gref/.
  70. 70.
    Alessio Camilli. Classifier systems in massively parallel architectures. Master’s thesis, University of Pisa, 1990. (In Italian).Google Scholar
  71. 71.
    Alessio Camilli and Roberto Di Meglio. Sistemi a classificatori su architetture a parallelismo massiccio. Technical report, Univ. Delgi Studi di Pisa, 1989.Google Scholar
  72. 72.
    Alessio Camilli, Roberto Di Meglio, F. Baiardi, M. Vanneschi, D. Montanari, and R. Serra. Classifier System Parallelization on MIMD Architectures. Technical Report 3/17, CNR, 1990.Google Scholar
  73. 73.
    Y. J. Cao, N. Ireson, Larry Bull, and R. Miles. Design of a Traffic Junction Controller using a Classifier System and Fuzzy Logic. In Proceedings of the Sixth International Conference on Computational Intelligence, Theory, and Applications. Springer-Verlag, 1999.Google Scholar
  74. 74.
    A. Carbonaro, G. Casadei, and A. Palareti. Genetic Algorithms and Classifier Systems in Simulating a Cooperative Behavior. In Nigel C. Steele, and Colin R. Reeves, editors. Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. Spring-Verlag, 1993 Albrecht et al. [5], pages 479–483.Google Scholar
  75. 75.
    Brian Carse. Learning Anticipatory Behaviour Using a Delayed Action Classifier System. In Fogarty [160], pages 210–223.Google Scholar
  76. 76.
    Brian Carse and Terence C. Fogarty. A delayed-action classifier system for learning in temporal environments. In Proceedings of the 1st IEEE Conference on Evolutionary Computation, volume 2, pages 670–673, 1994.Google Scholar
  77. 77.
    Brian Carse and Terence C. Fogarty. A Fuzzy Classifier System Using the Pittsburgh Approach. In H.-P. Schwefel, editors. Parallel Problem Solving From Nature — PPSN III, volume 866 of Lecture Notes in Computer Science, Berlin, 1994. Springer Verlag Davidor and Schwefel [102], pages 260–269.Google Scholar
  78. 78.
    Brian Carse, Terence C. Fogarty, and A. Munro. Evolving fuzzy rule based controllers using genetic algorithms. International Journal for Fuzzy Sets and Systems, 80:273–293, 1996.CrossRefGoogle Scholar
  79. 79.
    Brian Carse, Terence C. Fogarty, and A. Munro. The Temporal Fuzzy Classifier System and its Application to Distributed Control in a Homogeneous Multi-Agent ecology. In V. L. Uskov, and W. F. Punch, editors. Proceedings of the First International Conference on Evolutionary Algorithms and their Application EVCA’96, Moscow, 1996. The Presidium of the Russian Academy of Sciences Goodman et al. [198], pages 76–86.Google Scholar
  80. 80.
    Brian Carse, Terence C. Fogarty, and Alistair Munro. Evolving Temporal Fuzzy Rule-Bases for Distributed Routing Control in Telecommunication Networks. In J. L. Verdegay, editors. Genetic Algorithms and Soft Computing, (Studies in Fuzziness, 8). Physica-Verlag, Berlin, 1996 Herrera and Verdegay [218], pages 467–488.Google Scholar
  81. 81.
    Brian Carse, Terence C. Fogarty, and Alistair Munro. Artificial evolution of fuzzy rule bases which represent time: A temporal fuzzy classifier system. International Journal of Intelligent Systems, 13(issue 10–11):905–927, 1998.CrossRefGoogle Scholar
  82. 82.
    G. Casadei, A. Palareti, and G. Proli. Classifier System in Traffic Management. In Nigel C. Steele, and Colin R. Reeves, editors. Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. Spring-Verlag Albrecht et al. [5], pages 620–627.Google Scholar
  83. 83.
    Keith Chalk and George D. Smith. Multi-Agent Classifier Systems and the Iterated Prisoner’s Dilemma. In Nigel C. Steele, and Rudolf F. Albrecht, editors. Artificial Neural Networks and Genetic Algorithms. Springer, 1997 Smith et al. [372], pages 615–618.Google Scholar
  84. 84.
    Keith W. Chalk and George D. Smith. The Co-evolution of Classifier Systems in a Competitive Environment. Poster presented at AISB94. Authors were from the University of East Anglia, U.K.Google Scholar
  85. 85.
    Dave Cliff and S. G. Bullock. Adding ‘Foveal Vision’ to Wilson’s Animat. Adaptive Behavior, 2(1):47–70, 1993.Google Scholar
  86. 86.
    Dave Cliff, Philip Husbands, Jean-Arcady Meyer, and Stewart W. Wilson, editors. From Animals to Animats 3. Proceedings of the Third International Conference on Simulation of Adaptive Behavior (SAB94). A Bradford Book. MIT Press, 1994.Google Scholar
  87. 87.
    Dave Cliff and Susi Ross. Adding Temporary Memory to ZCS. Adaptive Behavior, 3(2):101–150, 1995. Also technical report: ftp://ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp347.ps.Z..CrossRefGoogle Scholar
  88. 88.
    Dave Cliff and Susi Ross. Adding Temporary Memory to ZCS. Technical Report CSRP347, School of Cognitive and Computing Sciences, University of Sussex, 1995. ftp://ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp347.ps.Z.
  89. 89.
    H. G. Cobb and John J. Grefenstette. Learning the persistence of actions in reactive control rules. In Proceedings 8th International Machine Learning Workshop, pages 293–297. Morgan Kaufmann, 1991.Google Scholar
  90. 90.
    Philippe Collard and Cathy Escazut. Relational Schemata: A Way to Improve the Expressiveness of Classifiers. In Eshelman [148], pages 397–404.Google Scholar
  91. 91.
    Marco Colombetti and Marco Dorigo. Learning to Control an Autonomous Robot by Distributed Genetic Algorithms. In H. L. Roitblat and S. W. Wilson, editors. From Animals to Animats 2. Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB92). A Bradford Book. MIT Press, 1992 Roitblat and Wilson [342], pages 305–312.Google Scholar
  92. 92.
    Marco Colombetti and Marco Dorigo. Robot Shaping: Developing Situated Agents through Learning. Technical Report TR-92-040, International Computer Science Institute, Berkeley, CA, 1993.Google Scholar
  93. 93.
    Marco Colombetti and Marco Dorigo. Training Agents to Perform Sequential Behavior. Technical Report TR-93-023, International Computer Science Institute, Berkeley, CA, September 1993.Google Scholar
  94. 94.
    Marco Colombetti and Marco Dorigo. Training agents to perform sequential behavior. Adaptive Behavior, 2(3):247–275, 1994. ftp://iridia.ulb.ac.be/pub/dorigo/journals/IJ.06-ADAP94.ps.gz..CrossRefGoogle Scholar
  95. 95.
    Marco Colombetti and Marco Dorigo. Verso un’ingegneria del comportamento. Rivista di Automatica, Elettronica e Informatica, 83(10), 1996. In Italian.Google Scholar
  96. 96.
    Marco Colombetti and Marco Dorigo. Evolutionary Computation in Behavior Engineering. In Evolutionary Computation: Theory and Applications, chapter 2, pages 37–80. World Scientific Publishing Co.: Singapore, 1999. Also Tech. Report. TR/IRIDIA/1996-1, IRIDIA, Université Libre de Bruxelles.Google Scholar
  97. 97.
    Marco Colombetti, Marco Dorigo, and G. Borghi. Behavior Analysis and Training: A Methodology for Behavior Engineering. IEEE Transactions on Systems, Man and Cybernetics, 26(6):365–380, 1996.Google Scholar
  98. 98.
    Marco Colombetti, Marco Dorigo, and G. Borghi. Robot shaping: The HAMSTER Experiment. In M. Jamshidi et al., editor, Proceedings of ISRAM’96, Sixth International Symposium on Robotics and Manufacturing, May 28–30, Montpellier, France, 1996.Google Scholar
  99. 99.
    M. Compiani, D. Montanari, R. Serra, and P. Simonini. Asymptotic dynamics of classifier systems. In Schaffer [354], pages 298–303.Google Scholar
  100. 100.
    M. Compiani, D. Montanari, R. Serra, and P. Simonini. Learning and Bucket Brigade Dynamics in Classifier Systems. In Special issue of Physica D (Vol. 42) [1], pages 202–212.Google Scholar
  101. 101.
    M. Compiani, D. Montanari, R. Serra, and G. Valastro. Classifier systems and neural networks. In Parallel Architectures and Neural Networks—First Italian Workshop, pages 105–118. World Scientific, Teaneck, NJ, 1989.Google Scholar
  102. 102.
    Y. Davidor and H.-P. Schwefel, editors. Parallel Problem Solving From Nature — PPSN III, volume 866 of Lecture Notes in Computer Science, Berlin, 1994. Springer Verlag.zbMATHGoogle Scholar
  103. 103.
    Lawrence Davis. Mapping Classifier Systems into Neural Networks. In Proceedings of the Workshop on Neural Information Processing Systems 1, pages 49–56, 1988.Google Scholar
  104. 104.
    Lawrence Davis, editor. Genetic Algorithms and Simulated Annealing, Research Notes in Artificial Intelligence. Pitman Publishing: London, 1989.Google Scholar
  105. 105.
    Lawrence Davis. Mapping Neural Networks into Classifier Systems. In Schaffer [354], pages 375–378.Google Scholar
  106. 106.
    Lawrence Davis. Covering and Memory in Classifier Systems. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  107. 107.
    Lawrence Davis and David Orvosh. The Mating Pool: A Testbed for Experiments in the Evolution of Symbol Systems. In Eshelman [148], pages 405–--Google Scholar
  108. 108.
    Lawrence Davis, Stewart W. Wilson, and David Orvosh. Temporary Memory for Examples can Speed Learning in a Simple Adaptive System. In H. L. Roitblat and S. W. Wilson, editors. From Animals to Animats 2. Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB92). A Bradford Book. MIT Press, 1992 Roitblat and Wilson [342], pages 313–320.Google Scholar
  109. 109.
    Lawrence Davis and D. K. Young. Classifier Systems with Hamming Weights. In Proceedings of the Fifth International Conference on Machine Learning, pages 162–173. Morgan Kaufmann, 1988.Google Scholar
  110. 110.
    Bart de Boer. Classifier Systems: a useful approach to machine learning? Master’s thesis, Leiden University, 1994. ftp://ftp.wi.leidenuniv.nl/pub/CS/MScTheses/deboer.94.ps.gz.
  111. 111.
    Kenneth A. De Jong. Learning with Genetic Algorithms: An Overview. Machine Learning, 3:121–138, 1988.CrossRefGoogle Scholar
  112. 112.
    Daniel Derrig and James Johannes. Deleting End-of-Sequence Classifiers. In John R. Koza, editor, Late Breaking Papers at the Genetic Programming 1998 Conference, University of Wisconsin, Madison, Wisconsin, USA, July 1998. Stanford University Bookstore.Google Scholar
  113. 113.
    Daniel Derrig and James D. Johannes. Hierarchical Exemplar Based Credit Allocation for Genetic Classifier Systems. In Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998 Koza et al. [262], pages 622–628.Google Scholar
  114. 114.
    L. Desjarlais and Stephanie Forrest. Linked learning in classifier systems: A control architecture for mobile robots. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  115. 115.
    P. Devine, R. Paton, and M. Amos. Adaptation of Evolutionary Agents in Computational Ecologies. In BCEC-97, Sweden, 1997.Google Scholar
  116. 116.
    Jean-Yves Donnart and Jean-Arcady Meyer. A hierarchical classifier system implementing a motivationally autonomous animat. In Philip Husbands, Jean-Arcady Meyer, and Stewart W. Wilson, editors. From Animals to Animats 3. Proceedings of the Third International Conference on Simulation of Adaptive Behavior (SAB94). A Bradford Book. MIT Press, 1994 Cliff et al. [86], pages 144–153.Google Scholar
  117. 117.
    Jean-Yves Donnart and Jean-Arcady Meyer. Hierarchical-map Building and Self-positioning with MonaLysa. Adaptive Behavior, 5(1):29–74, 1996.CrossRefGoogle Scholar
  118. 118.
    Jean-Yves Donnart and Jean-Arcady Meyer. Spatial Exploration, Map Learning, and Self-Positioning with MonaLysa. In Maja J. Mataric, Jean-Arcady Meyer, Jordan Pollack, and Stewart W. Wilson, editors. From Animals to Animats 4. Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (SAB96). A Bradford Book. MIT Press, 1996 Maes et al. [284], pages 204–213.Google Scholar
  119. 119.
    Marco Dorigo. Message-Based Bucket Brigade: An Algorithm for the Apportionment of Credit Problem. In Y. Kodratoff, editor, Proceedings of European Working Session on Learning’ 91, Porto, Portugal, number 482 in Lecture notes in Artificial Intelligence, pages 235–244. Springer-Verlag, 1991.Google Scholar
  120. 120.
    Marco Dorigo. New perspectives about default hierarchies formation in learning classifier systems. In E. Ardizzone, E. Gaglio, and S. Sorbello, editors, Proceedings of the 2nd Congress of the Italian Association for Artificial Intelligence (AI*IA) on Trends in Artificial Intelligence, volume 549 of LNAI, pages 218–227, Palermo, Italy, October 1991. Springer Verlag.Google Scholar
  121. 121.
    Marco Dorigo. Using Transputers to Increase Speed and Flexibility of Genetic-based Machine Learning Systems. Microprocessing and Microprogramming, 34:147–152, 1991.CrossRefGoogle Scholar
  122. 122.
    Marco Dorigo. Alecsys and the AutonoMouse: Learning to Control a Real Robot by Distributed Classifier System. Technical Report 92-011, Politecnico di Milano, 1992.Google Scholar
  123. 123.
    Marco Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, Italy, 1992. (In Italian).Google Scholar
  124. 124.
    Marco Dorigo. Genetic and Non-Genetic Operators in ALECSYS. Evolutionary Computation, 1(2):151–164, 1993. Also Tech. Report TR-92-075 International Computer Science Institute.MathSciNetCrossRefGoogle Scholar
  125. 125.
    Marco Dorigo. Gli Algoritmi Genetici, i Sistemi a Classificatori e il Problema dell’Animat. Sistemi Intelligenti, 3(93):401–434, 1993. In Italian.Google Scholar
  126. 126.
    Marco Dorigo. Alecsys and the AutonoMouse: Learning to Control a Real Robot by Distributed Classifier Systems. Machine Learning, 19:209–240, 1995.Google Scholar
  127. 127.
    Marco Dorigo. The Robot Shaping Approach to Behavior Engineering. Thése d’Agrégation de l’Enseignement Supérieur, Faculté des Sciences Appliquées, Université Libre de Bruxelles, pp.176, 1995.Google Scholar
  128. 128.
    Marco Dorigo and Hugues Bersini. A Comparison of Q-Learning and Classifier Systems. In Philip Husbands, Jean-Arcady Meyer, and Stewart W. Wilson, editors. From Animals to Animats 3. Proceedings of the Third International Conference on Simulation of Adaptive Behavior (SAB94). A Bradford Book. MIT Press, 1994 Cliff et al. [86], pages 248–255.Google Scholar
  129. 129.
    Marco Dorigo and Marco Colombetti. Robot shaping: Developing autonomous agents through learning. Artificial Intelligence, 2:321–370, 1994. ftp://iridia.ulb.ac.be/pub/dorigo/journals/IJ.05-AIJ94.ps.gz.CrossRefGoogle Scholar
  130. 130.
    Marco Dorigo and Marco Colombetti. The Role of the Trainer in Reinforcement Learning. In S. Mahadevan et al., editor, Proceedings of MLC-COLT’ 94 Workshop on Robot Learning, July 10th, New Brunswick, NJ, pages 37–45, 1994.Google Scholar
  131. 131.
    Marco Dorigo and Marco Colombetti. Précis of Robot Shaping: An Experiment in Behavior Engineering. Special Issue on Complete Agent Learning in Complex Environment, Adaptive Behavior, 5(3–4):391–405, 1997.Google Scholar
  132. 132.
    Marco Dorigo and Marco Colombetti. Reply to Dario Floreano’s “Engineering Adaptive Behavior”. Special Issue on Complete Agent Learning in Complex Environment, Adaptive Behavior, 5(3–4):417–420, 1997.Google Scholar
  133. 133.
    Marco Dorigo and Marco Colombetti. Robot Shaping: An Experiment in Behavior Engineering. MIT Press/Bradford Books, 1998.Google Scholar
  134. 134.
    Marco Dorigo and V. Maniezzo. Parallel Genetic Algorithms: Introduction and Overview of Current Research. In J. Stenders, editor, Parallel Genetic Algorithms: Theory and Applications, Amsterdam, 1992. IOS Press.Google Scholar
  135. 135.
    Marco Dorigo, V. Maniezzo, and D. Montanari. Classifier-based robot control systems. In IFAC/IFIP/IMACS International Symposium on Artificial Intelligence in Real-Time Control, pages 591–598, Delft, Netherlands, 1992.Google Scholar
  136. 136.
    Marco Dorigo, Mukesh J. Patel, and Marco Colombetti. The effect of Sensory Information on Reinforcement Learning by a Robot Arm. In M. Jamshidi et al., editor, Proceedings of ISRAM’94, Fifth International Symposium on Robotics and Manufacturing, August 14–18, Maui, HI, pages 83–88. ASME Press, 1994.Google Scholar
  137. 137.
    Marco Dorigo and U. Schnepf. Organisation of Robot Behaviour Through Genetic Learning Processes. In Proceedings of ICAR’91 — Fifth IEEE International Conference on Advanced Robotics, Pisa, Italy, pages 1456–1460. IEEE Press, 1991.Google Scholar
  138. 138.
    Marco Dorigo and U. Schnepf. Genetics-based Machine Learning and Behaviour Based Robotics: A New Synthesis. IEEE Transactions on Systems, Man and Cybernetics, 23(1):141–154, 1993.CrossRefGoogle Scholar
  139. 139.
    Marco Dorigo and E. Sirtori. A Parallel Environment for Learning Systems. In Proceedings of GAA91 — Second Italian Workshop on Machine Learning, Bari, Italy, 1991.Google Scholar
  140. 140.
    Marco Dorigo and Enrico Sirtori. Alecsys: A Parallel Laboratory for Learning Classifier Systems. In Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991 Booker and Belew [44], pages 296–302.Google Scholar
  141. 141.
    Barry B. Druhan and Robert C. Mathews. THIYOS: A Classifier System Model of Implicit Knowledge in Artificial Grammars. In Proc. Ann. Cog. Sci. Soc., 1989.Google Scholar
  142. 142.
    Daniel Eckert and Johann Mitlöhner. Modeling individual and endogenous learning in games: the relevance of classifier systems. In Complex Modeling for Socio-Economic Systems, SASA, Vienna, 1997.Google Scholar
  143. 143.
    Daniel Eckert, Johann Mitlöhner, and Makus Moschner. Evolutionary stability issues and adaptive learning in classifier systems. In OR’97 Conference on Operations Research, Vienna, 1997.Google Scholar
  144. 144.
    G. Enee and C. Escazut. Classifier systems evolving multi-agent system with distributed elitism. In Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Zalzala, editors. Proceedings of the 1999 Congress on Evolutionary Computation CEC99, Washington (DC), 1999. IEEE Press Angeline et al. [6], pages 1740–1745.Google Scholar
  145. 145.
    Cathy Escazut and Philippe Collard. Learning Disjunctive Normal Forms in a Dual Classifier System. In Nada Lavrač and Stefan Wrobel, editors, Proceedings of the 8th European Conference on Machine Learning, volume 912 of LNAI, pages 271–274. Springer, 1995.Google Scholar
  146. 146.
    Cathy Escazut, Philippe Collard, and Jean-Louis Cavarero. Dynamic Management of the Specificity in Classifier Systems. In Nigel C. Steele, and Colin R. Reeves, editors. Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. Spring-Verlag, 1993 Albrecht et al. [5], pages 484–491.Google Scholar
  147. 147.
    Cathy Escazut and Terence C. Fogarty. Coevolving Classifier Systems to Control Traffic Signals. In John R. Koza, editor, Late Breaking Papers at the 1997 Genetic Programming Conference, Stanford University, CA, USA, July 1997. Stanford Bookstore.Google Scholar
  148. 148.
    Larry J. Eshelman, editor. Proceedings of the 6th International Conference on Genetic Algorithms (ICGA95). Morgan kaufmann Publishers: San Francisco CA, 1995.Google Scholar
  149. 149.
    Andrew Fairley and Derek F. Yates. Improving Simple Classifier Systems to alleviate the problems of Duplication, Subsumption and Equivalence of Rules. In Nigel C. Steele, and Colin R. Reeves, editors. Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. Spring-Verlag, 1993 Albrecht et al. [5], pages 408–416.Google Scholar
  150. 150.
    Andrew Fairley and Derek F. Yates. Inductive Operators and Rule Repair in a Hybrid Genetic Learning System: Some Initial Results. In Fogarty [160], pages 166–179.Google Scholar
  151. 151.
    J. Doyne Farmer. A Rosetta Stone for Connectionism. In Special issue of Physica D (Vol. 42) [1], pages 153–187.Google Scholar
  152. 152.
    J. Doyne Farmer, N. H. Packard, and A. S. Perelson. The Immune System, Adaptation & Learning. Physica D, 22:187–204, 1986.CrossRefMathSciNetGoogle Scholar
  153. 153.
    Francine Federman and Susan Fife Dorchak. Information Theory and NEXT-PITCH: A Learning Classifier System. In Bäck [8], pages 442–449.Google Scholar
  154. 154.
    Francine Federman and Susan Fife Dorchak. Representation of Music in a Learning Classifier System. In Rad and Skowron, editors, Foundations of Intelligent Systems: Proceedings 10th International Symposium (ISMIS’97). Springer-Verlag: Heidelberg, 1997.Google Scholar
  155. 155.
    Francine Federman and Susan Fife Dorchak. A Study of Classifier Length and Population Size. In Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998 Koza et al. [262], pages 629–634.Google Scholar
  156. 156.
    Rhonda Ficek. Genetic Algorithms. Technical Report NDSU-CS-TR-90-51, North Dakota State University. Computer Science and Operations Research, 1997.Google Scholar
  157. 157.
    Gary William Flake. The Computational Beauty of Nature. MIT Press, 1998. (Contains a chapter on ZCS).Google Scholar
  158. 158.
    Peter Fletcher. Simulating the use of ‘fiat money’ in a simple commodity economy. Master’s thesis, Schools of Psychology and Computer Science, University of Birmingham, 1996.Google Scholar
  159. 159.
    Terence C. Fogarty. Co-evolving Co-operative Populations of Rules in Learning Control Systems. In Evolutionary Computing, AISB Workshop Selected Papers [160], pages 195–209.Google Scholar
  160. 160.
    Terence C. Fogarty, editor. Evolutionary Computing, AISB Workshop Selected Papers, number 865 in Lecture Notes in Computer Science. Springer-Verlag, 1994.zbMATHGoogle Scholar
  161. 161.
    Terence C. Fogarty. Learning new rules and adapting old ones with the genetic algorithm. In G. Rzevski, editor, Artificial Intelligence in Manufacturing, pages 275–290. Springer-Verlag, 1994.Google Scholar
  162. 162.
    Terence C. Fogarty. Optimising Individual Control Rules and Multiple Communicating Rule-based Control Systems with Parallel Distributed Genetic Algorithms. IEE Journal of Control Theory and Applications, 142(3):211–215, 1995.CrossRefGoogle Scholar
  163. 163.
    Terence C. Fogarty, Larry Bull, and Brian Carse. Evolving Multi-Agent Systems. In J. Periaux and G. Winter, editors, Genetic Algorithms in Engineering and Computer Science, pages 3–22. John Wiley & Sons, 1995.Google Scholar
  164. 164.
    Terence C. Fogarty, Brian Carse, and Larry Bull. Classifier Systems — recent research. AISB Quarterly, 89:48–54, 1994.Google Scholar
  165. 165.
    Terence C. Fogarty, Brian Carse, and Larry Bull. Classifier Systems: selectionist reinforcement learning, fuzzy rules and communication. Presented at the First International Workshop on Biologically Inspired Evolutionary Systems, Tokyo, 1995.Google Scholar
  166. 166.
    Terence C. Fogarty, Brian Carse, and A. Munro. Artificial evolution of fuzzy rule bases which represent time: A temporal fuzzy classifier system. International Journal of Intelligent Systems, 13(10–11):906–927, 1998.Google Scholar
  167. 167.
    Terence C. Fogarty, N. S. Ireson, and Larry Bull. Genetic-based Machine Learning — Applications in Industry and Commerce. In Applications of Modern Heuristic Methods, pages 91–110. Alfred Waller Ltd, 1995.Google Scholar
  168. 168.
    David B. Fogel. Evolutionary Computation. The Fossil Record. Selected Readings on the History of Evolutionary Computation, chapter 16: Classifier Systems. IEEE Press, 1998. This is a reprint of (Holland and Reitman, 1978), with an added introduction by Fogel.Google Scholar
  169. 169.
    Stephanie Forrest. A study of parallelism in the classifier system and its application to classification in KL-ONE semantic networks. PhD thesis, University of Michigan, Ann Arbor, MI, 1985.Google Scholar
  170. 170.
    Stephanie Forrest. Implementing semantic network structures using the classifier system. In Grefenstette [200], pages 24–44.Google Scholar
  171. 171.
    Stephanie Forrest. The Classifier System: A Computational Model that Supports Machine Intelligence. In International Conference on Parallel Processing, pages 711–716, Los Alamitos, Ca., USA, August 1986. IEEE Computer Society Press.Google Scholar
  172. 172.
    Stephanie Forrest. Parallelism and Programming in Classifier Systems. Pittman, London, 1991.Google Scholar
  173. 173.
    Stephanie Forrest, editor. Proceedings of the 5th International Conference on Genetic Algorithms (ICGA93). Morgan Kaufmann, 1993.Google Scholar
  174. 174.
    Stephanie Forrest and John H. Miller. Emergent behavior in classifier systems. In Special issue of Physica D (Vol. 42) [1], pages 213–217.Google Scholar
  175. 175.
    Stephanie Forrest, Robert E. Smith, and A. Perelson. Maintaining diversity with a genetic algorithm. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  176. 176.
    Francesc Xavier Llorà i Fàbrega and Josep Maria Garrell i Guiu. GENIFER: A Nearest Neighbour based Classifier System using GA. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], page 797. One page poster paper.Google Scholar
  177. 177.
    Francine Federman and Gayle Sparkman and Stephanie Watt. Representation of Music in a Learning Classifier System Utilizing Bach Chorales. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], page 785. One page poster paper.Google Scholar
  178. 178.
    Peter W. Frey and David J. Slate. Letter Recognition Using Holland-Style Adaptive Classifiers. Machine Learning, 6:161–182, 1991.Google Scholar
  179. 179.
    Leeann L. Fu. The XCS Classifier System and Q-learning. In John R. Koza, editor, Late Breaking Papers at the Genetic Programming 1998 Conference, University of Wisconsin, Madison, Wisconsin, USA, 1998. Stanford University Bookstore.Google Scholar
  180. 180.
    Takeshi Furuhashi. A Proposal of Hierarchical Fuzzy Classifier Systems. In Forrest [173].Google Scholar
  181. 181.
    Takeshi Furuhashi, Ken Nakaoka, Koji Morikawa, and Yoshiki Uchikawa. Controlling Excessive Fuzziness in a Fuzzy Classifier System. In Forrest [173], pages 635–635.Google Scholar
  182. 182.
    Takeshi Furuhashi, Ken Nakaoka, and Yoshiki Uchikawa. A Study on Fuzzy Classifier System for Finding Control Knowledge of Multi-Input Systems. In J. L. Verdegay, editors. Genetic Algorithms and Soft Computing, (Studies in Fuzziness, 8). Physica-Verlag, Berlin, 1996 Herrera and Verdegay [218], pages 489–502.Google Scholar
  183. 183.
    Santiago Garcia, Fermin Gonzalez, and Luciano Sanchez. Evolving Fuzzy Rule Based Classifiers with GA-P: A Grammatical Approach. In Riccardo Poli, Peter Nordin, William B. Langdon, and Terence C. Fogarty, editors, Genetic Programming, Proceedings of EuroGP’99, volume 1598 of LNCS, pages 203–210, Goteborg, Sweden, May 1999. Springer-Verlag.CrossRefGoogle Scholar
  184. 184.
    Andreas Geyer-Schulz. Fuzzy Classifier Systems. In Robert Lowen and Marc Roubens, editors, Fuzzy Logic: State of the Art, Series D: System Theory, Knowledge Engineering and Problem Solving, pages 345–354, Dordrecht, 1993. Kluwer Academic Publishers.Google Scholar
  185. 185.
    Andreas Geyer-Schulz. Fuzzy Rule-Based Expert Systems and Genetic Machine Learning. Physica Verlag, 1995. Book review at: http://www.apl.demon.co.uk/aplandj/fuzzy.htm.
  186. 186.
    Andreas Geyer-Schulz. Holland Classifier Systems. In Proceedings of the International Conference on APL (APL’95), volume 25, pages 43–55, New York, NY, USA, June 1995. ACM Press.Google Scholar
  187. 187.
    Antonella Giani. A Study of Parallel Cooperative Classifier Systems. In John R. Koza, editor, Late Breaking Papers at the Genetic Programming 1998 Conference, University of Wisconsin, Madison, Wisconsin, USA, July 1998. Stanford University Bookstore.Google Scholar
  188. 188.
    Antonella Giani, Fabrizio Baiardi, and Antonina Starita. Q-Learning in Evolutionary Rule-Based Systems. In H.-P. Schwefel, editors. Parallel Problem Solving From Nature — PPSN III, volume 866 of Lecture Notes in Computer Science, Berlin, 1994. Springer Verlag Davidor and Schwefel [102], pages 270–289.Google Scholar
  189. 189.
    Antonella Giani, A. Sticca, F. Baiardi, and A. Starita. Q-learning and Redundancy Reduction in Classifier Systems with Internal State. In Claire Nédellec and Céline Rouveirol, editors, Proceedings of the 10th European Conference on Machine Learning (ECML-98), volume 1398 of LNAI, pages 364–369. Springer, 1998.Google Scholar
  190. 190.
    A. H. Gilbert, Frances Bell, and Christine L. Valenzuela. Adaptive Learning of Process Control and Profit Optimisation using a Classifier System. Evolutionary Computation, 3(2):177–198, 1995.CrossRefGoogle Scholar
  191. 191.
    Attilio Giordana and Filippo Neri. Search-intensive concept induction. Evolutionary Computation, 3:375–416, 1995.CrossRefGoogle Scholar
  192. 192.
    David E. Goldberg. Computer-Aided Gas Pipeline Operation using Genetic Algorithms and Rule Learning. PhD thesis, The University of Michigan, 1983.Google Scholar
  193. 193.
    David E. Goldberg. Dynamic System Control using Rule Learning and Genetic Algorithms. In Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85), pages 588–592. Morgan Kaufmann, 1985.Google Scholar
  194. 194.
    David E. Goldberg. Genetic algorithms and rules learning in dynamic system control. In Grefenstette [200], pages 8–15.Google Scholar
  195. 195.
    David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Mass., 1989.zbMATHGoogle Scholar
  196. 196.
    David E. Goldberg. Probability Matching, the Magnitude of Reinforcement, and Classifier System Bidding. Machine Learning, 5:407–425, 1990. (Also TCGA tech report 88002, U. of Alabama).Google Scholar
  197. 197.
    David E. Goldberg, Jefirey Horn, and Kalyanmoy Deb. What Makes a Problem Hard for a Classifier System? In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. (Also tech. report 92007 Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign). Available from ENCORE (ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html) in the section on Classifier Systems.
  198. 198.
    E. G. Goodman, V. L. Uskov, and W. F. Punch, editors. Proceedings of the First International Conference on Evolutionary Algorithms and their Application EVCA’96, Moscow, 1996. The Presidium of the Russian Academy of Sciences.Google Scholar
  199. 199.
    David Perry Greene and Stephen F. Smith. Using Coverage as a Model Building Constraint in Learning Classifier Systems. Evolutionary Computation, 2(1):67–91, 1994.CrossRefGoogle Scholar
  200. 200.
    John J. Grefenstette, editor. Proceedings of the 1st International Conference on Genetic Algorithms and their Applications (ICGA85). Lawrence Erlbaum Associates: Pittsburgh, PA, July 1985.Google Scholar
  201. 201.
    John J. Grefenstette. Multilevel Credit Assignment in a Genetic Learning System. In Proceedings of the 2nd International Conference on Genetic Algorithms (ICGA87) [202], pages 202–207.Google Scholar
  202. 202.
    John J. Grefenstette, editor. Proceedings of the 2nd International Conference on Genetic Algorithms (ICGA87), Cambridge, MA, July 1987. Lawrence Erlbaum Associates.Google Scholar
  203. 203.
    John J. Grefenstette. Credit Assignment in Rule Discovery Systems Based on Genetic Algorithms. Machine Learning, 3:225–245, 1988.Google Scholar
  204. 204.
    John J. Grefenstette. A System for Learning Control Strategies with Genetic Algorithms. In Schaffer [354], pages 183–190.Google Scholar
  205. 205.
    John J. Grefenstette. Lamarckian Learning in Multi-Agent Environments. In Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991 Booker and Belew [44], pages 303–310. http://www.ib3.gmu.edu/gref/publications.html.Google Scholar
  206. 206.
    John J. Grefenstette. Learning decision strategies with genetic algorithms. In Proc. Intl. Workshop on Analogical and Inductive Inference, volume 642 of Lecture Notes in Artificial Intelligence, pages 35–50. Springer-Verlag, 1992. http://www.ib3.gmu.edu/gref/.
  207. 207.
    John J. Grefenstette. The Evolution of Strategies for Multi-agent Environments. Adaptive Behavior, 1:65–89, 1992. http://www.ib3.gmu.edu/gref/.CrossRefGoogle Scholar
  208. 208.
    John J. Grefenstette. Using a genetic algorithm to learn behaviors for autonomous vehicles. In Proceedings American Institute of Aeronautics and Astronautics Guidance, Navigation and Control Conference, pages 739–749. AIAA, 1992. http://www.ib3.gmu.edu/gref/.
  209. 209.
    John J. Grefenstette. Evolutionary Algorithms in Robotics. In M. Jamshedi and C. Nguyen, editors, Robotics and Manufacturing: Recent Trends in Research, Education and Applications, v5. Proc. Fifth Intl. Symposium on Robotics and Manufacturing, ISRAM 94, pages 65–72. ASME Press: New York, 1994. http://www.ib3.gmu.edu/gref/.Google Scholar
  210. 210.
    John J. Grefenstette and H. G. Cobb. User’s guide for SAMUEL, Version 1.3. Technical Report NRL Memorandum Report 6820, Naval Research Laboratory, 1991.Google Scholar
  211. 211.
    John J. Grefenstette, C. L. Ramsey, and Alan C. Schultz. Learning Sequential Decision Rules using Simulation Models and Competition. Machine Learning, 5(4):355–381, 1990. http://www.ib3.gmu.edu/gref/publications.html.Google Scholar
  212. 212.
    Adrian Hartley. Genetics Based Machine Learning as a Model of Perceptual Category Learning in Humans. Master’s thesis, University of Birmingham, 1998. ftp://ftp.cs.bham.ac.uk/pub/authors/T.Kovacs/index.html.
  213. 213.
    Adrian Hartley. Accuracy-based fitness allows similar performance to humans in static and dynamic classification environments. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 266–273.Google Scholar
  214. 214.
    U. Hartmann. Efficient Parallel Learning in Classifier Systems. In Nigel C. Steele, and Colin R. Reeves, editors. Proceedings of the International Conference on Articial Neural Nets and Genetic Algorithms. Spring-Verlag, 1993 Albrecht et al. [5], pages 515–521.Google Scholar
  215. 215.
    U. Hartmann. On the Complexity of Learning in Classifier Systems. In H.-P. Schwefel, editors. Parallel Problem Solving From Nature — PPSN III, volume 866 of Lecture Notes in Computer Science, Berlin, 1994. Springer Verlag Davidor and Schwefel [102], pages 280–289. Republished in: ECAI 94. 11th European Conference on Artificial Intelligence. A Cohn (Ed.), pp.438–442, 1994. John Wiley and Sons.Google Scholar
  216. 216.
    Marianne Haslev. A Classifier System for the Production by Computer of Past Tense Verb-Forms. Presented at a Genetic Algorithms Workshop at the Rowland Institute, Cambridge MA, Nov 1986, 1986.Google Scholar
  217. 217.
    Luis Miramontes Hercog. Hand-eye coordination: An evolutionary approach. Master’s thesis, Department of Artificial Intelligence. University of Edinburgh, 1998.Google Scholar
  218. 218.
    F. Herrera and J. L. Verdegay, editors. Genetic Algorithms and Soft Computing, (Studies in Fuzziness, 8). Physica-Verlag, Berlin, 1996.Google Scholar
  219. 219.
    M. R. Hilliard, G. E. Liepins, Mark Palmer, Michael Morrow, and Jon Richardson. A classifier based system for discovering scheduling heuristics. In Grefenstette [202], pages 231–235.Google Scholar
  220. 220.
    John H. Holland. Processing and processors for schemata. In E. L. Jacks, editor, Associative information processing, pages 127–146. New York: American Elsevier, 1971.Google Scholar
  221. 221.
    John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, 1975. Republished by the MIT press, 1992.Google Scholar
  222. 222.
    John H. Holland. Adaptation. In R. Rosen and F. M. Snell, editors, Progress in theoretical biology. New York: Plenum, 1976.Google Scholar
  223. 223.
    John H. Holland. Adaptive algorithms for discovering and using general patterns in growing knowledge bases. International Journal of Policy Analysis and Information Systems, 4(3):245–268, 1980.Google Scholar
  224. 224.
    John H. Holland. Genetic Algorithms and Adaptation. Technical Report 34, University of Michigan. Department of Computer and Communication Sciences, Ann Arbor, 1981.Google Scholar
  225. 225.
    John H. Holland. Escaping brittleness. In Proceedings Second International Workshop on Machine Learning, pages 92–95, 1983.Google Scholar
  226. 226.
    John H. Holland. Properties of the bucket brigade. In Grefenstette [200], pages 1–7.Google Scholar
  227. 227.
    John H. Holland. A Mathematical Framework for Studying Learning in a Classifier System. In Doyne Farmer, Alan Lapedes, Norman Packard, and Burton Wendroff, editors, Evolution, Games and Learning: Models for Adaptation in Machines and Nature, pages 307–317, Amsterdam, 1986. North-Holland.Google Scholar
  228. 228.
    John H. Holland. A Mathematical Framework for Studying Learning in Classifier Systems. Physica D, 22:307–317, 1986.zbMATHMathSciNetGoogle Scholar
  229. 229.
    John H. Holland. Escaping Brittleness: The possibilities of General-Purpose Learning Algorithms Applied to Parallel Rule-Based Systems. In Mitchell, Michalski, and Carbonell, editors, Machine learning, an artificial intelligence approach. Volume II, chapter 20, pages 593–623. Morgan Kaufmann, 1986.Google Scholar
  230. 230.
    John H. Holland. Genetic Algorithms and Classifier Systems: Foundations and Future Directions. In Grefenstette [202], pages 82–89.Google Scholar
  231. 231.
    John H. Holland. Concerning the Emergence of Tag-Mediated Lookahead in Classifier Systems. In Special issue of Physica D (Vol. 42) [1], pages 188–201.Google Scholar
  232. 232.
    John H. Holland and Arthur W. Burks. Adaptive Computing System Capable of Learning and Discovery. Patent 4697242 United States 29 Sept., 1987.Google Scholar
  233. 233.
    John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and P. R. Thagard. Induction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge, 1986.Google Scholar
  234. 234.
    John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and Paul R. Thagard. Classifier Systems, Q-Morphisms, and Induction. In Davis [104], pages 116–128.Google Scholar
  235. 235.
    John H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern-directed inference systems. New York: Academic Press, 1978. Reprinted in: Evolutionary Computation. The Fossil Record. David B. Fogel (Ed.) IEEE Press, 1998. ISBN: 0-7803-3481-7.Google Scholar
  236. 236.
    John H. Holmes. Evolution-Assisted Discovery of Sentinel Features in Epidemiologic Surveillance. PhD thesis, Drexel Univesity, 1996. http://cceb.med.upenn.edu/holmes/disstxt.ps.gz.
  237. 237.
    John H. Holmes. Discovering Risk of Disease with a Learning Classifier System. In Bäck [8]. http://cceb.med.upenn.edu/holmes/icga97.ps.gz.Google Scholar
  238. 238.
    John H. Holmes. Differential negative reinforcement improves classifier system learning rate in two-class problems with unequal base rates. In Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998 Koza et al. [262], pages 635–642. http://cceb.med.upenn.edu/holmes/gp98.ps.gz.Google Scholar
  239. 239.
    Keith J. Holyoak, K. Koh, and Richard E. Nisbett. A Theory of Conditioning: Inductive Learning within Rule-Based Default Hierarchies. Psych. Review, 96:315–340, 1990.CrossRefGoogle Scholar
  240. 240.
    Jeffrey Horn and David E. Goldberg. Natural Niching for Cooperative Learning in Classifier Systems. In David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors. Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, 1996. MIT Press Koza et al. [264], pages 553–564.Google Scholar
  241. 241.
    Jeffrey Horn and David E. Goldberg. Towards a Control Map for Niching. In Foundations of Genetic Algorithms, pages 287–310, 1998.Google Scholar
  242. 242.
    Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb. Implicit Niching in a Learning Classifier System: Nature’s Way. Evolutionary Computation, 2(1):37–66, 1994. Also IlliGAL Report No 94001, 1994.CrossRefGoogle Scholar
  243. 243.
    Dijia Huang. A framework for the credit-apportionment process in rule-based systems. IEEE Transaction on System Man and Cybernetics, 1989.Google Scholar
  244. 244.
    Dijia Huang. Credit Apportionment in Rule-Based Systems: Problem Analysis and Algorithm Synthesis. PhD thesis, University of Michigan, 1989.Google Scholar
  245. 245.
    Dijia Huang. The Context-Array Bucket-Brigade Algorithm: An Enhanced Approach to Credit-Apportionment in Classifier Systems. In Schaffer [354], pages 311–316.Google Scholar
  246. 246.
    Francesc Xavier Llorà i Fàbrega. Automatic Classification using genetic algorithms under a Pittsburgh approach. Master’s thesis, Enginyeria La Salle-Ramon Llull University, 1998. http://www.salleurl.edu/~xevil/Work/index.html.
  247. 247.
    Francesc Xavier Llorà i Fàbrega, Josep Maria Garrell i Guiu, and Ester Bernadó i Mansilla. A Classifier System based on Genetic Algorithm under the Pittsburgh aproach for problems with real valued attributes. In Viceng Torra, editor, Proceedings of Artificial Intelligence Catalan Workshop (CCIA98), volume 14–15, pages 85–93. ACIA Press, 1998. In Catalan http://www.salleurl.edu/~xevil/Work/index.html.
  248. 248.
    Josep Maria Garrell i Guiu, Elisabet Golobardes i Ribé, Ester Bernadó i Mansilla, and Francesc Xavier Llorà i Fàbrega. Automatic Classification of mammary biopsy images with machine learning techniques. In E. Alpaydin, editor, Proceedings of Engineering of Intelligent Systems (EIS’98), volume 3, pages 411–418. ICSC Academic Press, 1998. http://www.salleurl.edu/~xevil/Work/index.html.
  249. 249.
    Josep Maria Garrell i Guiu, Elisabet Golobardes i Ribé, Ester Bernadó i Mansilla, and Francesc Xavier Llorà i Fàbrega. Automatic Diagnosis with Genetic Algorithms and Case-Based Reasoning. To appear in AIENG Journal, 1999. (This is an expanded version of Guiu98a).Google Scholar
  250. 250.
    H. Iba, H. de Garis, and T. Higuchi. Evolutionary Learning of Predatory Behaviors Based on Structured Classifiers. In H. L. Roitblat and S. W. Wilson, editors. From Animals to Animats 2. Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB92). A Bradford Book. MIT Press, 1992 Roitblat and Wilson [342], pages 356–363.Google Scholar
  251. 251.
    John H. Holmes. Evaluating Learning Classifier System Performance In Two-Choice Decision Tasks: An LCS Metric Toolkit. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], page 789. One page poster paper.Google Scholar
  252. 252.
    John J. Grefenstette and Alan C. Schultz. An evolutionary approach to learning in robots. In Machine Learning Workshop on Robot Learning, New Brunswick, NJ, 1994. http://www.ib3.gmu.edu/gref/.
  253. 253.
    Kenneth A. De Jong and William M. Spears. Learning Concept Classification Rules using Genetic Algorithms. In Proceedings of the Twelth International Conference on Artificial Intelligence IJCAI-91, volume 2, 1991.Google Scholar
  254. 254.
    Hiroaki Kitano, Stephen F. Smith, and Tetsuya Higuchi. GA-1: A Parallel Associative Memory Processor for Rule Learning with Genetic Algorithms. In Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991 Booker and Belew [44], pages 311–317.Google Scholar
  255. 255.
    Leslie Knight and Sandip Sen. PLEASE: A Prototype Learning System using Genetic Algorithms. In Eshelman [148], pages 429–--Google Scholar
  256. 256.
    Kostyantyn Korovkin and Robert Richards. Visual Auction: A Classifier System Pedagogical and Researcher Tool. In Scott Brave and Annie S. Wu, editors, Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference (GECCO-99), pages 159–163, 1999.Google Scholar
  257. 257.
    Tim Kovacs. Evolving Optimal Populations with XCS Classifier Systems. Master’s thesis, School of Computer Science, University of Birmingham, Birmingham, U.K., 1996. Also tech. report CSR-96-17 and CSRP-96-17 ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSRP-96-17.ps.gz.Google Scholar
  258. 258.
    Tim Kovacs. Steady State Deletion Techniques in a Classifier System. Unpublished document — partially subsumed by Kovacs1999a ‘Deletion Schemes for Classifier Systems’, 1997.Google Scholar
  259. 259.
    Tim Kovacs. XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal Representations for Boolean Functions. In Roy, Chawdhry, and Pant, editors, Soft Computing in Engineering Design and Manufacturing, pages 59–68. Springer-Verlag, London, 1997. ftp://ftp.cs.bham.ac.uk/pub/authors/T.Kovacs/index.html.Google Scholar
  260. 260.
    Tim Kovacs. XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal Representations for Boolean Functions. Technical Report Version. Technical Report CSRP-97-19, School of Computer Science, University of Birmingham, Birmingham, U.K., 1997. http://www.cs.bham.ac.uk/system/techreports/tr.html.Google Scholar
  261. 261.
    Tim Kovacs. Deletion schemes for classifier systems. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 329–336. Also technical report CSRP-99-08, School of Computer Science, University of Birmingham. http://www.cs.bham.ac.uk/~tyk.Google Scholar
  262. 262.
    John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998.Google Scholar
  263. 263.
    John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1997: Proceedings of the Second Annual Conference. Morgan Kaufmann: San Francisco, CA, 1997.Google Scholar
  264. 264.
    John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors. Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, 1996. MIT Press.Google Scholar
  265. 265.
    Pier Luca Lanzi. A Model of the Environment to Avoid Local Learning (An Analysis of the Generalization Mechanism of XCS). Technical Report 97.46, Politecnico di Milano. Department of Electronic Engineering and Information Sciences, 1997. http://ftp.elet.polimi.it/people/lanzi/report46.ps.gz.
  266. 266.
    Pier Luca Lanzi. A Study of the Generalization Capabilities of XCS. In Bäck [8], pages 418–425. http://ftp.elet.polimi.it/people/lanzi/icga97.ps.gz.Google Scholar
  267. 267.
    Pier Luca Lanzi. Solving Problems in Partially Observable Environments with Classifier Systems (Experiments on Adding Memory to XCS). Technical Report 97.45, Politecnico di Milano. Department of Electronic Engineering and Information Sciences, 1997. http://ftp.elet.polimi.it/people/lanzi/report45.ps.gz.
  268. 268.
    Pier Luca Lanzi. Adding Memory to XCS. In Proceedings of the IEEE Conference on Evolutionary Computation (ICEC98). IEEE Press, 1998. http://ftp.elet.polimi.it/people/lanzi/icec98.ps.gz.
  269. 269.
    Pier Luca Lanzi. An analysis of the memory mechanism of XCSM. In Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998 Koza et al. [262], pages 643–651. http://ftp.elet.polimi.it/people/lanzi/gp98.ps.gz.Google Scholar
  270. 270.
    Pier Luca Lanzi. Generalization in Wilson’s XCS. In A. E. Eiben, T. Bäck, M. Shoenauer, and H.-P Schwefel, editors, Proceedings of the Fifth International Conference on Parallel Problem Solving From Nature — PPSN V, number 1498 in LNCS. Springer Verlag, 1998.CrossRefGoogle Scholar
  271. 271.
    Pier Luca Lanzi. Reinforcement Learning by Learning Classifier Systems. PhD thesis, Politecnico di Milano, 1998.Google Scholar
  272. 272.
    Pier Luca Lanzi. An Analysis of Generalization in the XCS Classifier System. Evolutionary Computation, 7(2):125–149, 1999.CrossRefGoogle Scholar
  273. 273.
    Pier Luca Lanzi. Extending the Representation of Classifier Conditions Part I: From Binary to Messy Coding. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 337–344.Google Scholar
  274. 274.
    Pier Luca Lanzi. Extending the Representation of Classifier Conditions Part II: From Messy Coding to S-Expressions. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 345–352.Google Scholar
  275. 275.
    Pier Luca Lanzi and Marco Colombetti. An Extension of XCS to Stochastic Environments. Technical Report 98.85, Dipartimento di Elettronica e Informazione-Politecnico di Milano, 1998.Google Scholar
  276. 276.
    Pier Luca Lanzi and Marco Colombetti. An Extension to the XCS Classifier System for Stochastic Environments. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 353–360.Google Scholar
  277. 277.
    Pier Luca Lanzi and Stewart W. Wilson. Optimal classifier system performance in non-Markov environments. Technical Report 99.36, Dipartimento di Elettronica e Informazione-Politecnico di Milano, 1999. Also IlliGAL tech. report 99022, University of Illinois.Google Scholar
  278. 278.
    Blake Lebaron, W. Brian Arthur, and R. Palmer. The Time Series Properties of an Artificial Stock Market. Journal of Economic Dynamics and Control, 1999.Google Scholar
  279. 279.
    T. Lettau and H. Uhlig. Rules of Thumb and Dynamic Programming. Technical report, Department of Economics, Princeton University, 1994.Google Scholar
  280. 280.
    Gunar E. Liepins, M. R. Hillard, M. Palmer, and G. Rangarajan. Credit Assignment and Discovery in Classifier Systems. International Journal of Intelligent Systems, 6:55–69, 1991.CrossRefGoogle Scholar
  281. 281.
    Gunar E. Liepins, Michael R. Hilliard, Mark Palmer, and Gita Rangarajan. Alternatives for Classifier System Credit Assignment. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), pages 756–761, 1989.Google Scholar
  282. 282.
    Gunar E. Liepins and Lori A. Wang. Classifier System Learning of Boolean Concepts. In Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991 Booker and Belew [44], pages 318–323.Google Scholar
  283. 283.
    Derek A. Linkens and H. Okola Nyongesah. Genetic Algorithms for fuzzy control-Part II: Off-line system development and application. Technical Report CTA/94/2387/1st MS, Department of Automatic Control and System Engineering, University of Sheffield, U.K., 1994.Google Scholar
  284. 284.
    Pattie Maes, Maja J. Mataric, Jean-Arcady Meyer, Jordan Pollack, and Stewart W. Wilson, editors. From Animals to Animats 4. Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (SAB96). A Bradford Book. MIT Press, 1996.Google Scholar
  285. 285.
    Chikara Maezawa and Masayasu Atsumi. Collaborative Learning Agents with Strutural Classifier Systems. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], page 777. One page poster paper.Google Scholar
  286. 286.
    Bernard Manderick. Selectionist Categorization. In Reinhard Männer, editors. Parallel Problem Solving from Nature: Proceedings of the First International Workshop. Dortmund, FRG, 1–3 Oct 1990, number 496 in Lecture Notes in Computer Science, Heidelberg, 1990. Springer Schwefel and Männer [358], pages 326–330.CrossRefGoogle Scholar
  287. 287.
    Ramon Marimon, Ellen McGrattan, and Thomas J. Sargent. Money as a Medium of Exchange in an Economy with Artificially Intelligent Agents. Journal of Economic Dynamics and Control, 14:329–373, 1990. Also Tech. Report 89-004, Santa Fe Institute, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  288. 288.
    Maja J Mataric. A comparative analysis of reinforcement learning methods. A.I. Memo No. 1322, Massachusetts Institute of Technology, 1991.Google Scholar
  289. 289.
    Alaster D. McAulay and Jae Chan Oh. Image Learning Classifier System Using Genetic Algorithms. In Proceedings IEEE NAECON’ 89, 1989.Google Scholar
  290. 290.
    Chris Melhuish and Terence C. Fogarty. Applying A Restricted Mating Policy To Determine State Space Niches Using Immediate and Delayed Reinforcement. In Fogarty [160], pages 224–237.Google Scholar
  291. 291.
    J. A. Meyer and S. W. Wilson, editors. From Animals to Animats 1. Proceedings of the First International Conference on Simulation of Adaptive Behavior (SAB90). A Bradford Book. MIT Press, 1990.Google Scholar
  292. 292.
    Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, 1996. Contains introductory chapter on LCS.Google Scholar
  293. 293.
    John H. Miller and Stephanie Forrest. The dynamical behavior of classifier systems. In Schafier [354], pages 304–310.Google Scholar
  294. 294.
    Johann Mitlöhner. Classifier systems and economic modelling. In APL’ 96. Proceedings of the APL 96 conference on Designing the future, volume 26(4), pages 77–86, 1996.CrossRefGoogle Scholar
  295. 295.
    Chilukuri K. Mohan. Expert Systems: A Modern Overview. Kluwer, to appear in 2000. Contains an introdutory survey chapter on LCS.Google Scholar
  296. 296.
    D. Montanari. Classifier systems with a constant-profile bucket brigade. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  297. 297.
    D. E. Moriarty, Alan C. Schultz, and John J. Grefenstette. Evolutionary algorithms for reinforcement learning. Journal of Artificial Intelligence Research, 11:199–229, 1999. http://www.ib3.gmu.edu/gref/papers/moriarty-jair99.html.MathSciNetGoogle Scholar
  298. 298.
    Rémi Munos and Jocelyn Patinel. Reinforcement learning with dynamic covering of state-action space: Partitioning Q-learning. In Philip Husbands, Jean-Arcady Meyer, and Stewart W. Wilson, editors. From Animals to Animats 3. Proceedings of the Third International Conference on Simulation of Adaptive Behavior (SAB94). A Bradford Book. MIT Press, 1994 Cliff et al. [86], pages 354–363.Google Scholar
  299. 299.
    Jorge Muruzábal. Mining the space of generality with uncertainty-concerned cooperative classifiers. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 449–457.Google Scholar
  300. 300.
    Ichiro Nagasaka and Toshiharu Taura. 3D Geometic Representation for Shape Generation using Classifier System. In Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1997: Proceedings of the Second Annual Conference. Morgan Kaufmann: San Francisco, CA, 1997 Koza et al. [263], pages 515–520.Google Scholar
  301. 301.
    Filippo Neri. First Order Logic Concept Learning by means of a Distributed Genetic Algorithm. PhD thesis, University of Milano, Italy, 1997.Google Scholar
  302. 302.
    Filippo Neri and Attilio Giordana. A distributed genetic algorithm for concept learning. In Eshelman [148], pages 436–443.Google Scholar
  303. 303.
    Filippo Neri and L. Saitta. Exploring the power of genetic search in learning symbolic classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-18:1135–1142, 1996.CrossRefGoogle Scholar
  304. 304.
    Volker Nissen and Jörg Biethahn. Determining a Good Inventory Policy with a Genetic Algorithm. In Jörg Biethahn and Volker Nissen, editors, Evolutionary Algorithms in Management Applications, pages 240–249. Springer Verlag, 1995.Google Scholar
  305. 305.
    Jae Chan Oh. Improved Classifier System Using Genetic Algorithms. Master’s thesis, Wright State University, ??Google Scholar
  306. 306.
    Norihiko Ono and Adel T. Rahmani. Self-Organization of Communication in Distributed Learning Classifier Systems. In Nigel C. Steele, and Colin R. Reeves, editors. Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. Spring-Verlag, 1993 Albrecht et al. [5], pages 361–367.Google Scholar
  307. 307.
    F. Oppacher and D. Deugo. The Evolution of Hierarchical Representations. In Proceedings of the 3rd European Conference on Artificial Life. Springer-Verlag, 1995.Google Scholar
  308. 308.
    Alexandre Parodi and P. Bonelli. The Animat and the Physician. In S. W. Wilson, editors. From Animals to Animats 1. Proceedings of the First International Conference on Simulation of Adaptive Behavior (SAB90). A Bradford Book. MIT Press, 1990 Meyer and Wilson [291], pages 50–57.Google Scholar
  309. 309.
    Alexandre Parodi and Pierre Bonelli. A New Approach to Fuzzy Classifier Systems. In Forrest [173], pages 223–230.Google Scholar
  310. 310.
    Mukesh J. Patel, Marco Colombetti, and Marco Dorigo. Evolutionary Learning for Intelligent Automation: A Case Study. Intelligent Automation and Soft Computing, 1(1):29–42, 1995.Google Scholar
  311. 311.
    Mukesh J. Patel and Marco Dorigo. Adaptive Learning of a Robot Arm. In Fogarty [160], pages 180–194.Google Scholar
  312. 312.
    Mukesh J. Patel and U. Schnepf. Concept Formation as Emergent Phenomena. In Francisco J. Varela and P. Bourgine, editors, Proceedings First European Conference on Artificial Life, pages 11–20. MIT Press, 1992.Google Scholar
  313. 313.
    Rolf Pfeifer, Bruce Blumberg, Jean-Arcady Meyer, and Stewart W. Wilson, editors. From Animals to Animats 5. Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior (SAB98). A Bradford Book. MIT Press, 1998.Google Scholar
  314. 314.
    Steven E. Phelan. Using Artificial Adaptive Agents to Explore Strategic Landscapes. PhD thesis, School of Business, Faculty of Law and Management, La Trobe University, Australia, 1997.Google Scholar
  315. 315.
    A. G. Pipe and Brian Carse. A Comparison between two Architectures for Searching and Learning in Maze Problems. In Fogarty [160], pages 238–249.Google Scholar
  316. 316.
    R. Piroddi and R. Rusconi. A Parallel Classifier System to Solve Learning Problems. Master’s thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy., 1992.Google Scholar
  317. 317.
    C. L. Ramsey and John J. Grefenstette. Case-based anytime learning. In Case-Based Reasoning: Papers from the 1994 Workshop, D. W. Aha (Ed.). Technical Report WS-94-07, AAAI Press: Menlo Park, CA, 1994. http://www.ib3.gmu.edu/gref/.Google Scholar
  318. 318.
    Gregory J. E. Rawlins, editor. Proceedings of the First Workshop on Foundations of Genetic Algorithms (FOGA91). Morgan Kaufmann: San Mateo, 1991.Google Scholar
  319. 319.
    Robert A. Richards. Zeroth-Order Shape Optimization Utilizing a Learning Classifier System. PhD thesis, Stanford University, 1995. Online version available at: http://www-leland.stanford.edu/~buc/SPHINcsX/book.html.
  320. 320.
    Robert A. Richards. Classifier System Metrics: Graphical Depictions. In Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998 Koza et al. [262], pages 652–657.Google Scholar
  321. 321.
    Robert A. Richards and Sheri D. Sheppard. Classifier System Based Structural Component Shape Improvement Utilizing I-DEAS. In Iccon User’s Conference Proceeding. Iccon, 1992.Google Scholar
  322. 322.
    Robert A. Richards and Sheri D. Sheppard. Learning Classifier Systems in Design Optimization. In Design Theory and Methodology’ 92. The American Society of Mechanical Engineers, 1992.Google Scholar
  323. 323.
    Robert A. Richards and Sheri D. Sheppard. Two-dimensional Component Shape Improvement via Classifier System. In Artificial Intelligence in Design’ 92. Kluwer Academic Publishers, 1992.Google Scholar
  324. 324.
    Robert A. Richards and Sheri D. Sheppard. A Learning Classifier System for Three-dimensional Shape Optimization. In H. M. Voigt, W. Ebeling, I. Rechenberg, and H. P. Schwefel, editors, Parallel Problem Solving from Nature — PPSN IV, volume 1141 of LNCS, pages 1032–1042. Springer-Verlag, 1996.CrossRefGoogle Scholar
  325. 325.
    Robert A. Richards and Sheri D. Sheppard. Three-Dimensional Shape Optimization Utilizing a Learning Classifier System. In David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors. Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, 1996. MIT Press Koza et al. [264], pages 539–546.Google Scholar
  326. 326.
    Rick L. Riolo. Bucket Brigade Performance: I. Long Sequences of Classifiers. In Grefenstette [202], pages 184–195.Google Scholar
  327. 327.
    Rick L. Riolo. Bucket Brigade Performance: II. Default Hierarchies. In Grefenstette [202], pages 196–201.Google Scholar
  328. 328.
    Rick L. Riolo. CFS-C: A Package of Domain-Independent Subroutines for Implementing Classifier Systems in Arbitrary User-Defined Environments. Technical report, University of Michigan, 1988.Google Scholar
  329. 329.
    Rick L. Riolo. Empirical Studies of Default Hierarchies and Sequences of Rules in Learning Classifier Systems. PhD thesis, University of Michigan, 1988.Google Scholar
  330. 330.
    Rick L. Riolo. The Emergence of Coupled Sequences of Classifiers. In Schafier [354], pages 256–264.Google Scholar
  331. 331.
    Rick L. Riolo. The Emergence of Default Hierarchies in Learning Classifier Systems. In Schafier [354], pages 322–327.Google Scholar
  332. 332.
    Rick L. Riolo. Lookahead Planning and Latent Learning in a Classifier System. In S. W. Wilson, editors. From Animals to Animats 1. Proceedings of the First International Conference on Simulation of Adaptive Behavior (SAB90). A Bradford Book. MIT Press, 1990 Meyer and Wilson [291], pages 316–326.Google Scholar
  333. 333.
    Rick L. Riolo. Modeling Simple Human Category Learning with a Classifier System. In Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991 Booker and Belew [44], pages 324–333.Google Scholar
  334. 334.
    Rick L. Riolo. The discovery and use of forward models for adaptive classifier systems. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  335. 335.
    Joaquin Rivera and Roberto Santana. Improving the Discovery Component of Classifier Systems by the Application of Estimation of Distribution Algorithms. In Proceedings of Student Sessions ACAI’99: Machine Learning and Applications, pages 43–44, Chania, Greece, July 1999.Google Scholar
  336. 336.
    Gary Roberts. A Rational Reconstruction of Wilson’s Animat and Holland’s CS-1. In Schafier [354].Google Scholar
  337. 337.
    Gary Roberts. Dynamic Planning for Classifier Systems. In Forrest [173], pages 231–237.Google Scholar
  338. 338.
    George G. Robertson. Parallel Implementation of Genetic Algorithms in a Classifier System. In Grefenstette [202], pages 140–147. Also Tech. Report TR-159 RL87-5 Thinking Machines Corporation.Google Scholar
  339. 339.
    George G. Robertson. Population Size in Classifier Systems. In Proceedings of the Fifth International Conference on Machine Learning, pages 142–152. Morgan Kaufmann, 1988.Google Scholar
  340. 340.
    George G. Robertson. Parallel Implementation of Genetic Algorithms in a Classifier System. In Davis [104], pages 129–140.Google Scholar
  341. 341.
    George G. Robertson and Rick L. Riolo. A Tale of Two Classifier Systems. Machine Learning, 3:139–159, 1988.Google Scholar
  342. 342.
    J. A. Meyer H. L. Roitblat and S. W. Wilson, editors. From Animals to Animats 2. Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB92). A Bradford Book. MIT Press, 1992.Google Scholar
  343. 343.
    S. Ross. Accurate Reaction or Reflective Action? Master’s thesis, School of Cognitive and Computing Sciences, University of Sussex, 1994.Google Scholar
  344. 344.
    A. Sanchis, J. M. Molina, P. Isasi, and J. Segovia. Knowledge acquisition including tags in a classifier system. In Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Zalzala, editors. Proceedings of the 1999 Congress on Evolutionary Computation CEC99, Washington (DC), 1999. IEEE Press Angeline et al. [6], pages 137–144.Google Scholar
  345. 345.
    Adrian V. Sannier and Erik D. Goodman. Midgard: A Genetic Approach to Adaptive Load Balancing for Distributed Systems. In Proc. Fifth Intern. Conf. Machine Learning. Morgan Kaufmann, 1988.Google Scholar
  346. 346.
    Cfiedric Sanza, Christophe Destruel, and Yves Duthen. Agents autonomes pour l’interaction adaptative dans les mondes virtuels. In 5fieme Journfiees de l’Association Francaise d’Informatique Graphique. Décembre 1997, Rennes, France, 1997. In French.Google Scholar
  347. 347.
    Cédric Sanza, Christophe Destruel, and Yves Duthen. A learning method for adaptation and evolution in virtual environments. In 3rd International Conference on Computer Graphics and Artificial Intelligence, April 1998, Limoges, France, 1998.Google Scholar
  348. 348.
    Cédric Sanza, Christophe Destruel, and Yves Duthen. Autonomous actors in an interactive real-time environment. In ICVC’99 International Conference on Visual Computing Feb. 1999, Goa, India, 1999.Google Scholar
  349. 349.
    Cédric Sanza, Christophe Destruel, and Yves Duthen. Learning in real-time environment based on classifiers system. In 7th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media’99, Plzen, Czech Republic, 1999.Google Scholar
  350. 350.
    Cédric Sanza, Cyril Panatier, Hervé Luga, and Yves Duthen. Adaptive Behavior for Cooperation: a Virtual Reality Application. In 8th IEEE International Workshop on Robot and Human Interaction September 1999, Pisa, Italy, 1999.Google Scholar
  351. 351.
    Andreas Schachtner. A classifier system with integrated genetic operators. In H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer Science, pages 331–337, Berlin, 1990. Springer.CrossRefGoogle Scholar
  352. 352.
    J. David Schafier. Some experiments in machine learning using vector evaluated genetic algorithms. PhD thesis, Vanderbilt University, Nashville, 1984.Google Scholar
  353. 353.
    J. David Schafier. Learning Multiclass Pattern Discrimination. In Grefenstette [200], pages 74–79.Google Scholar
  354. 354.
    J. David Schafier, editor. Proceedings of the 3rd International Conference on Genetic Algorithms (ICGA89), George Mason University, June 1989. Morgan Kaufmann.Google Scholar
  355. 355.
    Alan C. Schultz and John J. Grefenstette. Evolving Robot Behaviors. Poster at the Artificial Life Conference. http://www.ib3.gmu.edu/gref/.
  356. 356.
    Alan C. Schultz and John J. Grefenstette. Improving Tactical Plans with Genetic Algorithms. In Proceedings of the Second International Conference on Tools for Artificial Intelligence. IEEE, 1990.Google Scholar
  357. 357.
    Dale Schuurmans and Jonathan Schaefier. Representational Difficulties with Classifier Systems. In Schafier [354], pages 328–333. http://www.cs.ualberta.ca/~jonathan/Papers/classifier.ps.gz.
  358. 358.
    Hans-Paul Schwefel and Reinhard Männer, editors. Parallel Problem Solving from Nature: Proceedings of the First International Workshop. Dortmund, FRG, 1–3 Oct 1990, number 496 in Lecture Notes in Computer Science, Heidelberg, 1990. Springer.Google Scholar
  359. 359.
    Tod A. Sedbrook, Haviland Wright, and Richard Wright. Application of a Genetic Classifier for Patient Triage. In Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991 Booker and Belew [44], pages 334–338.Google Scholar
  360. 360.
    Sandip Sen. Classifier system learning of multiplexer function. Dept. of Electrical Engineering, University of Alabama, Tuscaloosa, Alabama. Class Project, 1988.Google Scholar
  361. 361.
    Sandip Sen. Sequential Boolean Function Learning by Classifier System. In Proc. of 1st International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, 1988.Google Scholar
  362. 362.
    Sandip Sen. Noise Sensitivity in a simple classifier system. In Proc. 5th Conf. on Neural Networks & Parallel Distributed Processing, 1992.Google Scholar
  363. 363.
    Sandip Sen. Improving classification accuracy through performance history. In Forrest [173], pages 652–652.Google Scholar
  364. 364.
    Sandip Sen. A Tale of two representations. In Proc. 7th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, pages 245–254, 1994.Google Scholar
  365. 365.
    Sandip Sen. Modeling human categorization by a simple classifier system. WSC1: 1st Online Workshop on Soft Computing. Aug 19–30, 1996. http://www.bioele.nuee.nagoya-u.ac.jp/wsc1/papers/p020.html, 1996.
  366. 366.
    Sandip Sen and Mahendra Sekaran. Multiagent Coordination with Learning Classifier Systems. In Gerhard Weifi and Sandip Sen, editors, Proceedings of the IJCAI Workshop on Adaption and Learning in Multi-Agent Systems, volume 1042 of LNAI, pages 218–233. Springer Verlag, 1996.Google Scholar
  367. 367.
    F. Seredynski and C. Z. Janikow. Learning nash equilibria by coevolving distributed classifier systems. In Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Zalzala, editors. Proceedings of the 1999 Congress on Evolutionary Computation CEC99, Washington (DC), 1999. IEEE Press Angeline et al. [6], pages 1619–1626.Google Scholar
  368. 368.
    Sotaro Shimada and Yuichiro Anzai. Component-Based Adaptive Architecture with Classifier Systems. In Bruce Blumberg, Jean-Arcady Meyer, and Stewart W. Wilson, editors. From Animals to Animats 5. Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior (SAB98). A Bradford Book. MIT Press, 1998 Pfeifer et al. [313].Google Scholar
  369. 369.
    Lingyan Shu and Jonathan Schaefier. VCS: Variable Classifier System. In Schafier [354], pages 334–339. http://www.cs.ualberta.ca/~jonathan/Papers/vcs.ps.gz.
  370. 370.
    Lingyan Shu and Jonathan Schaefier. Improving the Performance of Genetic Algorithm Learning by Choosing a Good Initial Population. Technical Report TR-90-22, University of Alberta, CS DEPT, Edmonton, Alberta, Canada, 1990.Google Scholar
  371. 371.
    Lingyan Shu and Jonathan Schaefier. HCS: Adding Hierarchies to Classifier Systems. In Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991 Booker and Belew [44], pages 339–345.Google Scholar
  372. 372.
    George D. Smith, Nigel C. Steele, and Rudolf F. Albrecht, editors. Artificial Neural Networks and Genetic Algorithms. Springer, 1997.Google Scholar
  373. 373.
    Robert E. Smith. Defult Hierarchy Formation and Memory Exploitation in Learning Classifier Systems. PhD thesis, University of Alabama, 1991.Google Scholar
  374. 374.
    Robert E. Smith. A Report on The First International Workshop on Learning Classifier Systems (IWLCS-92). NASA Johnson Space Center, Houston, Texas, Oct. 6–9. ftp://lumpi.informatik.uni-dortmund.de/pub/LCS/papers/lcs92.ps.gz or from ENCORE, The Electronic Appendix to the Hitch-Hiker’s Guide to Evolutionary Computation (ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html) in the section on Classifier Systems, 1992.
  375. 375.
    Robert E. Smith. Is a classifier system a type of neural network? In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  376. 376.
    Robert E. Smith. Memory exploitation in learning classifier systems. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  377. 377.
    Robert E. Smith. Genetic Learning in Rule-Based and Neural Systems. In Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1, page 183. NASA. Johnson Space Center, January 1993.Google Scholar
  378. 378.
    Robert E. Smith. Memory Exploitation in Learning Classifier Systems. Evolutionary Computation, 2(3):199–220, 1994.CrossRefGoogle Scholar
  379. 379.
    Robert E. Smith and H. Brown Cribbs. Is a Learning Classifier System a Type of Neural Network? Evolutionary Computation, 2(1):19–36, 1994.CrossRefGoogle Scholar
  380. 380.
    Robert E. Smith, B. A. Dike, R. K. Mehra, B. Ravichandran, and A. El-Fallah. Classifier Systems in Combat: Two-sided Learning of Maneuvers for Advanced Fighter Aircraft. In Computer Methods in Applied Mechanics and Engineering. Elsevier, 1999.Google Scholar
  381. 381.
    Robert E. Smith, Stephanie Forrest, and A. S. Perelson. Searching for diverse, cooperative subpopulations with Genetic Algorithms. Evolutionary Computation, 1(2):127–149, 1993.CrossRefGoogle Scholar
  382. 382.
    Robert E. Smith and David E. Goldberg. Reinforcement Learning with Classifier Systems: Adaptive Default Hierarchy Formation. Technical Report 90002, TCGA, University of Alabama, 1990.Google Scholar
  383. 383.
    Robert E. Smith and David E. Goldberg. Variable Default Hierarchy Separation in a Classifier System. In Rawlins [318], pages 148–170.Google Scholar
  384. 384.
    Robert E. Smith and David E. Goldberg. Reinforcement learning with classifier systems: adaptative default hierarchy formation. Applied Artificial Intelligence, 6, 1992.Google Scholar
  385. 385.
    Robert E. Smith and H. B. Cribbs III. Cooperative Versus Competitive System Elements in Coevolutionary Systems. In Maja J. Mataric, Jean-Arcady Meyer, Jordan Pollack, and Stewart W. Wilson, editors. From Animals to Animats 4. Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (SAB96). A Bradford Book. MIT Press, 1996 Maes et al. [284], pages 497–505.Google Scholar
  386. 386.
    Robert E. Smith and H. B. Cribbs III. Combined biological paradigms. Robotics and Autonomous Systems, 22(1):65–74, 1997.CrossRefGoogle Scholar
  387. 387.
    Robert E. Smith and Manuel Valenzuela-Rendón. A Study of Rule Set Development in a Learning Classifier System. In Schaffer [354], pages 340–346.Google Scholar
  388. 388.
    S. F. Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD thesis, University of Pittsburgh, 1980.Google Scholar
  389. 389.
    S. F. Smith. Flexible Learning of Problem Solving Heuristics through Adaptive Search. In Proceedings Eigth International Joint Conference on Artificial Intelligence, pages 422–425, 1983.Google Scholar
  390. 390.
    S. F. Smith and D. P. Greene. Cooperative Diversity using Coverage as a Constraint. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  391. 391.
    Sotaro Shimada and Yuichiro Anzai. Fast and Robust Convergence of Chained Classifiers by Generating Operons through Niche Formation. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], page 810. One page poster paper.Google Scholar
  392. 392.
    Piet Spiessens. PCS: A Classifier System that Builds a Predictive Internal World Model. In PROC of the 9th European Conference on Artificial Intelligence, Stockholm, Sweden, Aug. 6-10, pages 622–627, 1990.Google Scholar
  393. 393.
    Wolfgang Stolzmann. Learning Classifier Systems using the Cognitive Mechanism of Anticipatory Behavioral Control, detailed version. In Proceedings of the First European Workshop on Cognitive Modelling, pages 82–89. Berlin: TU, 1996. http://www.psychologie.uni-wuerzburg.de/stolzmann/.Google Scholar
  394. 394.
    Wolfgang Stolzmann. Antizipative Classifier Systeme. PhD thesis, Fachbereich Mathematik/Informatik, University of Osnabrueck, 1997.Google Scholar
  395. 395.
    Wolfgang Stolzmann. Two Applications of Anticipatory Classifier Systems (ACSs). In Proceedings of the 2nd European Conference on Cognitive Science, pages 68–73. Manchester, U.K., 1997. http://www.psychologie.uniwuerzburg.de/stolzmann/.
  396. 396.
    Wolfgang Stolzmann. Anticipatory classifier systems. In Proceedings of the Third Annual Genetic Programming Conference, pages 658–664, San Francisco, CA, 1998. Morgan Kaufmann. http://www.psychologie.uniwuerzburg.de/stolzmann/gp-98.ps.gz.
  397. 397.
    S. Tokinaga and A. B. Whinston. Applying Adaptive Credit Assignment Algorithm for the Learning Classifier System Based upon the Genetic Algorithm. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, VE75A(5):568–577, May 1992.Google Scholar
  398. 398.
    Andy Tomlinson and Larry Bull. A Corporate Classifier System. In A. E. Eiben, T. Bäck, M. Shoenauer, and H.-P Schwefel, editors, Proceedings of the Fifth International Conference on Parallel Problem Solving From Nature — PPSN V, number 1498 in LNCS, pages 550–559. Springer Verlag, 1998.CrossRefGoogle Scholar
  399. 399.
    Andy Tomlinson and Larry Bull. On Corporate Classifier Systems: Increasing the Benefits of Rule Linkage. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 649–656.Google Scholar
  400. 400.
    Andy Tomlinson and Larry Bull. A zeroth level corporate classifier system. In Proc. 2nd International Workshop of Learning Classifier Systems (IWLCS-99), pages 306–313, Cambridge, MA, 1999. AAAI Press.Google Scholar
  401. 401.
    Patrick Tufts. Dynamic Classifiers: Genetic Programming and Classifier Systems. In E. V. Siegel and J. R. Koza, editors, Working Notes for the AAAI Symposium on Genetic Programming, pages 114–119, MIT, Cambridge, MA, USA, 1995. AAAI. http://www.cs.brandeis.edu/~zippy/papers.html.Google Scholar
  402. 402.
    Kirk Twardowski. Implementation of a Genetic Algorithm based Associative Classifier System (ACS). In Proceedings International Conference on Tools for Artificial Intelligence, 1990.Google Scholar
  403. 403.
    Kirk Twardowski. Credit Assignment for Pole Balancing with Learning Classifier Systems. In Forrest [173], pages 238–245.Google Scholar
  404. 404.
    Kirk Twardowski. An Associative Architecture for Genetic Algorithm-Based Machine Learning. Computer, 27(11):27–38, November 1994.CrossRefGoogle Scholar
  405. 405.
    J. Urzelai, Dario Floreano, Marco Dorigo, and Marco Colombetti. Incremental Robot Shaping. Connection Science, 10(3–4):341–360, 1998.CrossRefGoogle Scholar
  406. 406.
    J. Urzelai, Dario Floreano, Marco Dorigo, and Marco Colombetti. Incremental Robot Shaping. In Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998 Koza et al. [262], pages 832–840.Google Scholar
  407. 407.
    Manuel Valenzuela-Rendón. Boolean Analysis of Classifier Sets. In Schaffer [354], pages 351–358.Google Scholar
  408. 408.
    Manuel Valenzuela-Rendón. Two analysis tools to describe the operation of classifier systems. PhD thesis, University of Alabama, 1989. Also TCGA tech. report 89005.Google Scholar
  409. 409.
    Manuel Valenzuela-Rendón. The Fuzzy Classifier System: a Classifier System for Continuously Varying Variables. In Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991 Booker and Belew [44], pages 346–353.Google Scholar
  410. 410.
    Manuel Valenzuela-Rendón. The Fuzzy Classifier System: Motivations and First Results. Lecture Notes in Computer Science, 496:338–--, 1991.CrossRefGoogle Scholar
  411. 411.
    Manuel Valenzuela-Rendón. Reinforcement learning in the fuzzy classifier system. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  412. 412.
    Manuel Valenzuela-Rendón and Eduardo Uresti-Charre. A Non-Genetic Algorithm for Multiobjective Optimization. In Bäck [8], pages 658–665.Google Scholar
  413. 413.
    Terry van Belle. A New Approach to Genetic-Based Automatic Feature Discovery. Master’s thesis, University of Alberta, 1995. http://www.cs.ualberta.ca/~jonathan/.
  414. 414.
    Gilles Venturini. Apprentissage Adaptatif et Apprentissage Supervisé par Algorithme Génétique. PhD thesis, Université de Paris-Sud., 1994.Google Scholar
  415. 415.
    Nickolas Vriend. Self-Organization of Markets: An Example of a Computational Approach. Computational Economics, 8(3):205–231, 1995.zbMATHCrossRefGoogle Scholar
  416. 416.
    L. A. Wang. Classifier System Learning of the Boolean Multiplexer Function. Master’s thesis, Computer Science Department, University of Tennessee, Knoxville, TN, 1990.Google Scholar
  417. 417.
    Gerhard Weiss. The Action-Oriented Bucket Brigade. Technical Report FKI-156-91, Technical Univ. München (TUM), 1991.Google Scholar
  418. 418.
    Thomas H. Westerdale. The bucket brigade is not genetic. In Grefenstette [200], pages 45–59.Google Scholar
  419. 419.
    Thomas H. Westerdale. Altruism in the bucket brigade. In Grefenstette [202], pages 22–26.Google Scholar
  420. 420.
    Thomas H. Westerdale. A Defense of the Bucket Brigade. In Schaffer [354], pages 282–290.Google Scholar
  421. 421.
    Thomas H. Westerdale. Quasimorphisms or Queasymorphisms? Modeling Finite Automaton Environments. In Rawlins [318], pages 128–147.Google Scholar
  422. 422.
    Thomas H. Westerdale. Redundant Classifiers and Prokaryote Genomes. In Richard K. Belew, editors. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann: San Francisco CA, July 1991 Booker and Belew [44], pages 354–360.Google Scholar
  423. 423.
    Thomas H. Westerdale. Classifier Systems-No Wonder They Don’t Work. In Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1997: Proceedings of the Second Annual Conference. Morgan Kaufmann: San Francisco, CA, 1997 Koza et al. [263], pages 529–537.Google Scholar
  424. 424.
    Thomas H. Westerdale. An Approach to Credit Assignment in Classifier Systems. Complexity, 4(2), 1999.Google Scholar
  425. 425.
    Thomas H. Westerdale. Wilson’s Error Measurement and the Markov Property — Identifying Detrimental Classifiers. In Proc. 2nd International Workshop of Learning Classifier Systems (IWLCS-99), Cambridge, MA, 1999. AAAI Press.Google Scholar
  426. 426.
    Jason R. Wilcox. Organizational Learning within a Learning Classifier Systems. Master’s thesis, University of Illinois, 1995. Also Tech. Report No. 95003 IlliGAL.Google Scholar
  427. 427.
    Stewart W. Wilson. Aubert processing and intelligent vision. Technical report, Polaroid Corporation, 1981.Google Scholar
  428. 428.
    Stewart W. Wilson. On the retino-cortical mapping. International Journal of Man-Machine Studies, 18:361–389, 1983.CrossRefGoogle Scholar
  429. 429.
    Stewart W. Wilson. Adaptive “cortical” pattern recognition. In Grefenstette [200], pages 188–196.Google Scholar
  430. 430.
    Stewart W. Wilson. Knowledge Growth in an Artificial Animal. In Grefenstette [200], pages 16–23. Also appeared in Proceedings of the 4th Yale.Google Scholar
  431. 431.
    Stewart W. Wilson. Knowledge Growth in an Artificial Animal. In Proceedings of the 4th Yale Workshop on Applications of Adaptive Systems Theory, pages 98–104, 1985.Google Scholar
  432. 432.
    Stewart W. Wilson. Classifier System Learning of a Boolean Function. Technical Report RIS 27r, The Rowland Institute for Science, 1986.Google Scholar
  433. 433.
    Stewart W. Wilson. Knowledge Growth in an Artificial Animal. In K. S. Narenda, editor, Adaptive and learning systems: Theory and applications, pages 255–264. Plenum Press: New York, 1986.Google Scholar
  434. 434.
    Stewart W. Wilson. Classifier Systems and the Animat Problem. Machine Learning, 2:199–228, 1987. Also Research Memo RIS-36r, the Rowland Institute for Science, Cambridge, MA, 1986.Google Scholar
  435. 435.
    Stewart W. Wilson. Hierarchical Credit Allocation in a Classifier System. In Proceedings Tenth International Joint Conference on AI (IJCAI-87), pages 217–220. Morgan Kaufmann Publishers, 1987. Also Research Memo RIS-37r, the Rowland Insitute for Science, Cambridge, MA, 1986.Google Scholar
  436. 436.
    Stewart W. Wilson. Quasi-Darwinian Learning in a Classifier System. In Proceedings of the Fourth International Workshop on Machine Learning, pages 59–65. Morgan Kaufmann, 1987.Google Scholar
  437. 437.
    Stewart W. Wilson. The genetic algorithm and biological development. In Grefenstette [202], pages 247–251.Google Scholar
  438. 438.
    Stewart W. Wilson. Bid Competition and Specificity Reconsidered. Complex Systems, 2(6):705–723, 1988.zbMATHMathSciNetGoogle Scholar
  439. 439.
    Stewart W. Wilson. Hierarchical Credit Assignment in a Classifier System. In M. Elzas, T. Oren, and B. P. Zeigler, editors, Modelling and Simulation Methodology: Knowledge Systems Paradigms. North Holland, 1988.Google Scholar
  440. 440.
    Stewart W. Wilson. Hierarchical Credit Allocation in a Classifier System. In Davis [104], pages 104–115.Google Scholar
  441. 441.
    Stewart W. Wilson. Hierarchical credit allocation in a classifier system. In M. S. Elzas, T. I. Oren, and B. P. Zeigler, editors, Modelling and simulation methodology, pages 351–357. North-Holland: New York, 1989.Google Scholar
  442. 442.
    Stewart W. Wilson. Perceptron redux: Emergence of structure. In Special issue of Physica D (Vol. 42) [1], pages 249–256. Republished in Emergent Computation, S. Forrest (ed.), MIT Press/Bradford Books.Google Scholar
  443. 443.
    Stewart W. Wilson. The Genetic Algorithm and Simulated Evolution. In Chris Langton, editor, Artificial Life: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems, volume VI of Santa Fe Institute Studies in the Sciences of Complexity. Addison-Wesley: Reading, MA, 1989.Google Scholar
  444. 444.
    Stewart W. Wilson. The Animat Path to AI. In S. W. Wilson, editors. From Animals to Animats 1. Proceedings of the First International Conference on Simulation of Adaptive Behavior (SAB90). A Bradford Book. MIT Press, 1990 Meyer and Wilson [291], pages 15–21. http://prediction-dynamics.com/.
  445. 445.
    Stewart W. Wilson. Classifier System mapping of real vectors. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  446. 446.
    Stewart W. Wilson. Toward a GA solution of the discovery problem. In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92) [2]. October 6–8, NASA Johnson Space Center, Houston, Texas.Google Scholar
  447. 447.
    Stewart W. Wilson. ZCS: A zeroth level classifier system. Evolutionary Computation, 2(1):1–18, 1994. http://prediction-dynamics.com/.CrossRefGoogle Scholar
  448. 448.
    Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation, 3(2):149–175, 1995. http://prediction-dynamics.com/.CrossRefGoogle Scholar
  449. 449.
    Stewart W. Wilson. Explore/exploit strategies in autonomy. In Maja J. Mataric, Jean-Arcady Meyer, Jordan Pollack, and Stewart W. Wilson, editors. From Animals to Animats 4. Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (SAB96). A Bradford Book. MIT Press, 1996 Maes et al. [284], pages 325–332.Google Scholar
  450. 450.
    Stewart W. Wilson. Generalization in XCS. Unpublished contribution to the ICML’ 96 Workshop on Evolutionary Computing and Machine Learning. http://prediction-dynamics.com/, 1996.
  451. 451.
    Stewart W. Wilson. Generalization in evolutionary learning. Presented at the Fourth European Conference on Artificial Life (ECAL97), Brighton, UK, July 27–31. http://prediction-dynamics.com/, 1997.
  452. 452.
    Stewart W. Wilson. Generalization in the XCS classifier system. In Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998 Koza et al. [262], pages 665–674. http://prediction-dynamics.com/.Google Scholar
  453. 453.
    Stewart W. Wilson. Get real! XCS with continuous-valued inputs. In L. Booker, Stephanie Forrest, M. Mitchell, and Rick L. Riolo, editors, Festschrift in Honor of John H. Holland, pages 111–121. Center for the Study of Complex Systems, 1999. http://prediction-dynamics.com/.
  454. 454.
    Stewart W. Wilson. State of XCS classifier system research. Technical Report 99.1.1, Prediction Dynamics, Concord MA, 1999. http://predictiondynamics.com/.Google Scholar
  455. 455.
    Stewart W. Wilson and David E. Goldberg. A Critical Review of Classifier Systems. In Schaffer [354], pages 244–255. http://prediction-dynamics.com/.
  456. 456.
    Ian Wright. Reinforcement Learning and Animat Emotions. In Maja J. Mataric, Jean-Arcady Meyer, Jordan Pollack, and Stewart W. Wilson, editors. From Animals to Animats 4. Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (SAB96). A Bradford Book. MIT Press, 1996 Maes et al. [284], pages 272–281.Google Scholar
  457. 457.
    Ian Wright. Reinforcement learning and animat emotions. Technical Report CSRP-96-4, School of Computer Science. University of Birmingham, 1996. ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSRP-96-04.ps.gz.
  458. 458.
    Derek F. Yates and Andrew Fairley. An Investigation into Possible Causes of, and Solutions to, Rule Strength Distortion Due to the Bucket Brigade Algorithm. In Forrest [173], pages 246–253.Google Scholar
  459. 459.
    Derek F. Yates and Andrew Fairley. Evolutionary Stability in Simple Classifier Systems. In Fogarty [160], pages 28–37.Google Scholar
  460. 460.
    Takahiro Yoshimi and Toshiharu Taura. Hierarchical Classifier System Based on the Concept of Viewpoint. In Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998 Koza et al. [262], pages 675–678.Google Scholar
  461. 461.
    Takahiro Yoshimi and Toshiharu Taura. A Computational Model of a Viewpoint-Forming Process in a Hierarchical Classifier System. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [12], pages 758–766.Google Scholar
  462. 462.
    Zhaohua Zhang, Stan Franklin, and Dipankar Dasgupta. Metacognition in Software Agents Using Classifier Systems. In AAAI-98. Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages 83–88, Madison (WI), 1998. AAAI-Press and MIT Press.Google Scholar
  463. 463.
    Hayong Harry Zhou. Classifier systems with long term memory. In Grefenstette [200], pages 178–182.Google Scholar
  464. 464.
    Hayong Harry Zhou. CSM: A genetic classifier system with memory for learning by analogy. PhD thesis, Department of Computer Science, Vanderbilt University, Nashville, TN, 1987.Google Scholar
  465. 465.
    Hayong Harry Zhou. CSM: A Computational Model of Cumulative Learning. Machine Learning, 5(4):383–406, 1990.Google Scholar
  466. 466.
    Hayong Harry Zhou and John J. Grefenstette. Learning by Analogy in Genetic Classifier Systems. In Schaffer [354], pages 291–297.Google Scholar
  467. 467.
    Raed Abu Zitar and Mohammad H. Hassoun. Regulator Control via Genetic Search Assisted Reinforcement. In Forrest [173], pages 254–263.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Tim Kovacs
    • 1
  • Pier Luca Lanzi
    • 2
  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamUK
  2. 2.Artificial Intelligence & Robotics Project Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilano

Personalised recommendations