Get Real! XCS with Continuous-Valued Inputs

  • Stewart W. Wilson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1813)


Classifier systems have traditionally taken binary strings as inputs, yet in many real problems such as data inference, the inputs have real components. A modified XCS classifier system is described that learns a non-linear real-vector classification t


Test Problem Evolutionary Computation Disjunctive Normal Form Data Inference Current Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonarini, A.: Evolutionary learning of fuzzy rules: competition and cooperation. In: W. Pedrycz (ed.), Fuzzy Modelling: Paradigms and Practice. Norwell, MA: Kluwer Academic Press (1996) 265–284.Google Scholar
  2. 2.
    Holland, J. H.: Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In: R. S. Michalski, J. G. Carbonell & T. M. Mitchell (Eds.), Machine Learning, An Artificial Intelligence Approach. Volume II. Los Altos, California: Morgan Kaufmann (1986).Google Scholar
  3. 3.
    Holmes, J. H.: Discovering risk of disease with a learning classifier system. In T. Baeck, ed., Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA97). Morgan Kaufmann, San Francisco, CA. (1998) 426–433.Google Scholar
  4. 4.
    Kovacs, T.: XCS classifier system reliably evolves accurate, complete, and minimal representations for Boolean functions. In: Roy, Chawdhry and Pant (Eds), Soft Computing in Engineering Design and Manufacturing, Springer-Verlag London (1997) 59–68. (1999) 329–336.Google Scholar
  5. 6.
    Lanzi, P. L. and Colombetti, M.: An extension to the XCS classifier system for stochastic environments. In: Banzhaf, W., et al, (eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA (1999) 353–360.Google Scholar
  6. 7.
    Lanzi, P. L. and Perrucci, A.: Extending the representation of classifier conditions, part II: from messy coding to s-expressions. In: Banzhaf, W., et al, (eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA (1999) 345–352.Google Scholar
  7. 8.
    Rechenberg, I.: Evolutionsstrategie’ 94. Stuttgart-Bad Cannstatt: Frommann-Holzboog (1994).Google Scholar
  8. 9.
    Saxon, S. and Barry, A.: XCS and the Monk’s Problems. This volume.Google Scholar
  9. 10.
    Wilson, S. W.: ZCS: a zeroth level classifier system. Evolutionary Computation 2(1) (1994) 1–18.CrossRefGoogle Scholar
  10. 11.
    Wilson, S. W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2) (1995) 149–175.CrossRefGoogle Scholar
  11. 12.
    Wilson, S. W.: Generalization in the XCS classifier system. In Proceedings of the Third Annual Genetic Programming Conference, J. Koza et al (eds.). San Francisco, CA: Morgan Kaufmann (1998) 665–674.Google Scholar
  12. 13.
    Wilson, S. W.: State of XCS classifier system research. This volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Stewart W. Wilson
    • 1
    • 2
  1. 1.The University of IllinoisUrbana-ChampaignUSA
  2. 2.Prediction DynamicsConcordUSA

Personalised recommendations