Advertisement

What Is a Learning Classifier System?

  • John H. Holland
  • Lashon B. Booker
  • Marco Colombetti
  • Marco Dorigo
  • David E. Goldberg
  • Stephanie Forrest
  • Rick L. Riolo
  • Robert E. Smith
  • Pier Luca Lanzi
  • Wolfgang Stolzmann
  • Stewart W. Wilson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1813)

Abstract

We asked ‘What is a Learning Classifier System’ to some of the best-known researchers in the field. These are their answers.

Keywords

Genetic Algorithm Rule Discovery Credit Assignment Reinforcement Learning Technique Niche Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manu Ahluwalia and Larry Bull. A Genetic Programming-based Classifier System. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [4], pages 11–18.Google Scholar
  2. 2.
    W. Brian Arthur, John H. Holland, Blake LeBaron, Richard Palmer, and Paul Talyer. Asset Pricing Under Endogenous Expectations in an Artificial Stock Market. Technical report, Santa Fe Institute, 1996. This is the original version of LeBaron 1999a.Google Scholar
  3. 3.
    Thomas Bäck, editor. Proceedings of the 7th International Conference on Genetic Algorithms (ICGA97). Morgan Kaufmann: San Francisco CA, 1997.Google Scholar
  4. 4.
    Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999.Google Scholar
  5. 5.
    Alwyn Barry. Aliasing in XCS and the Consecutive State Problem: 1 — Effects. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [4], pages 19–26.Google Scholar
  6. 6.
    Alwyn Barry. Aliasing in XCS and the Consecutive State Problem: 2 — Solutions. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [4], pages 27–34.Google Scholar
  7. 7.
    John Tyler Bonner. The Evolution of Complexity. Princeton University Press, Princeton, New Jersey, 1988.Google Scholar
  8. 8.
    Lashon B. Booker. Intelligent Behavior as an Adaptation to the Task Environment. PhD thesis, The University of Michigan, 1982.Google Scholar
  9. 9.
    Lashon B. Booker. Do We Really Need to Estimate Rule Utilities in Classifier Systems? In Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classier Systems: An Introduction to Contemporary Research, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000 Lanzi et al. [50], pages 125–142. (this volume).Google Scholar
  10. 10.
    Lashon B. Booker, David E. Goldberg, and John H. Holland. Classifier Systems and Genetic Algorithms. Artificial Intelligence, 40:235–282, 1989.CrossRefGoogle Scholar
  11. 11.
    Leo W. Buss. The Evolution of Individuality. Princeton University Press, Princeton, New Jersey, 1987.Google Scholar
  12. 12.
    H. J. Chiel and R. D. Beer. The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neurosciences, 20:553–557, 1997.CrossRefGoogle Scholar
  13. 13.
    Marco Colombetti and Marco Dorigo. Evolutionary Computation in Behavior Engineering. In Evolutionary Computation: Theory and Applications, chapter 2, pages 37–80. World Scientific Publishing Co.: Singapore, 1999. Also Tech. Report. TR/IRIDIA/1996-1, IRIDIA, Université Libre de Bruxelles.Google Scholar
  14. 14.
    Michael Sean Davis. A Computational Model of Affect Theory: Simulations of Reducer/Augmenter and Learned Helplessness Phenomena. PhD thesis, Department of Psychology, University of Michigan, 2000.Google Scholar
  15. 15.
    Marco Dorigo. Alecsys and the AutonoMouse: Learning to Control a Real Robot by Distributed Classifier Systems. Machine Learning, 19:209–240, 1995.Google Scholar
  16. 16.
    Marco Dorigo and Marco Colombetti. Robot shaping: Developing autonomous agents through learning. Artificial Intelligence, 2:321–370, 1994. ftp://iridia.ulb.ac.be/pub/dorigo/journals/IJ.05-AIJ94.ps.gz.CrossRefGoogle Scholar
  17. 17.
    Marco Dorigo and Marco Colombetti. Robot Shaping: An Experiment in Behavior Engineering. MIT Press/Bradford Books, 1998.Google Scholar
  18. 18.
    E.B. Baum. Toward a model of intelligence as an economy of agents. Machine Learning, 35:155–185, 1999.zbMATHCrossRefGoogle Scholar
  19. 19.
    J. Doyne Farmer, N. H. Packard, and A. S. Perelson. The Immune System, Adaptation & Learning. Physica D, 22:187–204, 1986.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Francine Federman and Susan Fife Dorchak. Information Theory and NEXT-PITCH: A Learning Classifier System. In Bäck [3], pages 442–449.Google Scholar
  21. 21.
    David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Mass., 1989.zbMATHGoogle Scholar
  22. 22.
    David E. Goldberg. Probability Matching, the Magnitude of Reinforcement, and Classifier System Bidding. Machine Learning, 5:407–425, 1990. (Also TCGA tech report 88002, U. of Alabama).Google Scholar
  23. 23.
    H. Hendriks-Jansen. Catching Ourselves in the Act. MIT Press, Cambridge, MA, 1996.Google Scholar
  24. 24.
    S. Hofmeyr and S. Forrest. Immunity by design: An artificial immune system. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pages 1289–1296, San Francisco, CA, 1999. Morgan-Kaufmann.Google Scholar
  25. 25.
    J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. Thagard. Induction: Processes of Inference, Learning, and Discovery. MIT Press, 1986.Google Scholar
  26. 26.
    John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, 1975. Republished by the MIT press, 1992.Google Scholar
  27. 27.
    John H. Holland. Adaptation. In R. Rosen and F. M. Snell, editors, Progress in theoretical biology. New York: Plenum, 1976.Google Scholar
  28. 28.
    John H. Holland. Adaptive algorithms for discovering and using general patterns in growing knowledge bases. International Journal of Policy Analysis and Information Systems, 4(3):245–268, 1980.Google Scholar
  29. 29.
    John H. Holland. Escaping brittleness. In Proceedings Second International Workshop on Machine Learning, pages 92–95, 1983.Google Scholar
  30. 30.
    John H. Holland. A Mathematical Framework for Studying Learning in Classifier Systems. Physica D, 22:307–317, 1986.zbMATHMathSciNetGoogle Scholar
  31. 31.
    John H. Holland. Escaping Brittleness: The possibilities of General-Purpose Learning Algorithms Applied to Parallel Rule-Based Systems. In Mitchell, Michalski, and Carbonell, editors, Machine learning, an artificial intelligence approach. Volume II, chapter 20, pages 593–623. Morgan Kaufmann, 1986.Google Scholar
  32. 32.
    John H. Holland. Concerning the Emergence of Tag-Mediated Lookahead in Classifier Systems. Special issue of Physica D (Vol. 42), 42:188–201, 1989.Google Scholar
  33. 33.
    John H. Holland. Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Reading, MA, 1995.Google Scholar
  34. 34.
    John H. Holland and Arthur W. Burks. Adaptive Computing System Capable of Learning and Discovery. Patent 4697242 United States 29 Sept., 1987.Google Scholar
  35. 35.
    John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and P. R. Thagard. Induction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge, 1986.Google Scholar
  36. 36.
    John H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern-directed inference systems. New York: Academic Press, 1978. Reprinted in: Evolutionary Computation. The Fossil Record. David B. Fogel (Ed.) IEEE Press, 1998. ISBN: 0-7803-3481-7.Google Scholar
  37. 37.
    John H. Holmes. Discovering Risk of Disease with a Learning Classifier System. In Bäck [3]. http://cceb.med.upenn.edu/holmes/icga97.ps.gz.Google Scholar
  38. 38.
    Keith J. Holyoak, K. Koh, and Richard E. Nisbett. A Theory of Conditioning: Inductive Learning within Rule-Based Default Hierarchies. Psych. Review, 96:315–340, 1990.CrossRefGoogle Scholar
  39. 39.
    Kevin Kelly. Out of Control. Addison-Wesley, Reading, MA, 1994.Google Scholar
  40. 40.
    Tim Kovacs. Evolving Optimal Populations with XCS Classifier Systems. Master’s thesis, School of Computer Science, University of Birmingham, Birmingham, U.K., 1996. Also tech. report CSR-96-17 and CSRP-96-17 ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSRP-96-17.ps.gz.Google Scholar
  41. 41.
    Tim Kovacs. Strength or Accuracy? Fitness calculation in learning classifier systems. In Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classier Systems: An Introduction to Contemporary Research, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000 Lanzi et al. [50], pages 143–160. (this volume).Google Scholar
  42. 42.
    Tim Kovacs and Pier Luca Lanzi. A Learning Classifier Systems Bibliography. In Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classier Systems: An Introduction to Contemporary Research, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000 Lanzi et al. [50], pages 323–350. (this volume).Google Scholar
  43. 43.
    John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. The MIT Press, Cambridge, MA, 1994.zbMATHGoogle Scholar
  44. 44.
    John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998.Google Scholar
  45. 45.
    Pier Luca Lanzi. A Study of the Generalization Capabilities of XCS. In Bäck [3], pages 418–425. http://ftp.elet.polimi.it/people/lanzi/icga97.ps.gz.Google Scholar
  46. 46.
    Pier Luca Lanzi. Adding Memory to XCS. In Proceedings of the IEEE Conference on Evolutionary Computation (ICEC98). IEEE Press, 1998. http://ftp.elet.polimi.it/people/lanzi/icec98.ps.gz.
  47. 47.
    Pier Luca Lanzi. Reinforcement Learning by Learning Classifier Systems. PhD thesis, Politecnico di Milano, 1998.Google Scholar
  48. 48.
    Pier Luca Lanzi. An Analysis of Generalization in the XCS Classifier System. Evolutionary Computation, 7(2):125–149, 1999.CrossRefGoogle Scholar
  49. 49.
    Pier Luca Lanzi and Rick L. Riolo. A Roadmap to the Last Decade of Learning Classifier System Research (from 1989 to 1999). In Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classifier Systems: An Introduction to Contemporary Research, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000 Lanzi et al. [50], pages 33–62. (this volume).Google Scholar
  50. 50.
    Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classifier Systems: An Introduction to Contemporary Research, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000.Google Scholar
  51. 51.
    Pier Luca Lanzi and Stewart W. Wilson. Optimal classifier system performance in non-Markov environments. Technical Report 99.36, Dipartimento di Elettronica e Informazione-Politecnico di Milano, 1999. Also IlliGAL tech. report 99022, University of Illinois.Google Scholar
  52. 52.
    P.L. Lanzi and S. W. Wilson. Toward optimal classifier system performance in non-Markov environments. Evolutionary Computation, 2000. to appear.Google Scholar
  53. 53.
    Blake Lebaron, W. Brian Arthur, and R. Palmer. The Time Series Properties of an Artificial Stock Market. Journal of Economic Dynamics and Control, 1999.Google Scholar
  54. 54.
    Ramon Marimon, Ellen McGrattan, and Thomas J. Sargent. Money as a Medium of Exchange in an Economy with Artificially Intelligent Agents. Journal of Economic Dynamics and Control, 14:329–373, 1990. Also Tech. Report 89-004, Santa Fe Institute, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Richard E. Michod. Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality. Princeton University Press, Princeton, New Jersey, 1999.Google Scholar
  56. 56.
    Alan Newell and Herbert Simon. Human Problem Solving. Prentice Hall, Engel-wood Cliffs, NJ.Google Scholar
  57. 57.
    E. Oliveira, J.M. Fonseca, and N. Jennings. Learning to be competitive in the Market. 1999. Proceedings of the AAAI Workshop on Negotiation, Orlando (FL).Google Scholar
  58. 58.
    J. K. Percus, O. Percus, and A. S. Perelson. Predicting the size of the antibody combining region from consideration of efficient self/non-self discrimination. Proceedings of the National Academy of Science, 90:1691–1695, 1993.CrossRefGoogle Scholar
  59. 59.
    Rick L. Riolo. Lookahead Planning and Latent Learning in a Classifier System. pages 316–326. A Bradford Book. MIT Press, 1990.Google Scholar
  60. 60.
    Rick L. Riolo. Lookahead planning and latent learning in a classifier system. Ann Arbor, MI, 1991. In the Proceedings of the Simulation of Adaptive Behavior Conference, MIT Press, 1991.Google Scholar
  61. 61.
    Rick L. Riolo. Modeling Simple Human Category Learning with a Classifier System. pages 324–333. Morgan Kaufmann: San Francisco CA, July 1991.Google Scholar
  62. 62.
    George G. Robertson. Parallel Implementation of Genetic Algorithms in a Classifier System. In John J. Grefenstette, editor, Proceedings of the 2nd International Conference on Genetic Algorithms (ICGA87), pages 140–147, Cambridge, MA, July 1987. Lawrence Erlbaum Associates. Also Tech. Report TR-159 RL87-5 Thinking Machines Corporation.Google Scholar
  63. 63.
    George G. Robertson and Rick L. Riolo. A Tale of Two Classifier Systems. Machine Learning, 3:139–159, 1988.Google Scholar
  64. 64.
    S. A Hofmeyr and S. Forrest. Architecture for an Artificial Immune System. Submitted to Evolutionary Computation. Available at http://www.cs.unm.edu/ steveah/ecs.ps, 1999.
  65. 65.
    Samuel, A. L. Some Studies in Machine Learning Using the Game of Checkers. IBM Journ. R & D, 3:211–229, 1959. Reprinted in Feigenbaum, E., and Feldman, J. (eds.), Computer and Thoughts, pp. 71–105, New York: McGraw-Hill, 1963.MathSciNetGoogle Scholar
  66. 66.
    Shaun Saxon and Alwyn Barry. XCS and the Monk’s Problems. In Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classifier Systems: An Introduction to Contemporary Research, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000 Lanzi et al. [50], pages 223–242. (this volume).Google Scholar
  67. 67.
    R. E. Smith, B. A. Dike, B. Ravichandran, A. El-Fallah, and R. K. Mehra. The Fighter Aircraft LCS: A Case of Different LCS Goals and Techniques. In Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classifier Systems: An Introduction to Contemporary Research, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000 Lanzi et al. [50], pages 285–302. (this volume).Google Scholar
  68. 68.
    Robert E. Smith, B. A. Dike, R. K. Mehra, B. Ravichandran, and A. El-Fallah. Classifier Systems in Combat: Two-sided Learning of Maneuvers for Advanced Fighter Aircraft. In Computer Methods in Applied Mechanics and Engineering. Elsevier, 1999.Google Scholar
  69. 69.
    Wolfgang Stolzmann. Learning Classifier Systems using the Cognitive Mechanism of Anticipatory Behavioral Control, detailed version. In Proceedings of the First European Workshop on Cognitive Modelling, pages 82–89. Berlin: TU, 1996. http://www.psychologie.uni-wuerzburg.de/stolzmann/.Google Scholar
  70. 70.
    Wolfgang Stolzmann. Two Applications of Anticipatory Classifier Systems (ACSs). In Proceedings of the 2nd European Conference on Cognitive Science, pages 68–73. Manchester, U.K., 1997. http://www.psychologie.uni-wuerzburg.de/stolzmann/.
  71. 71.
    Wolfgang Stolzmann. Anticipatory classifier systems. In Proceedings of the Third Annual Genetic Programming Conference, pages 658–664, San Francisco, CA, 1998. Morgan Kaufmann. http://www.psychologie.uni-wuerzburg.de/stolzmann/gp-98.ps.gz.
  72. 72.
    Wolfgang Stolzmann. An Introduction to Anticipatory Classifier Systems. In Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classifier Systems: An Introduction to Contemporary Research, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000 Lanzi et al. [50], pages 175–194. (this volume).Google Scholar
  73. 73.
    Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning, pages 216–224, Austin, TX, 1990. Morgan Kaufmann.Google Scholar
  74. 74.
    Richard S. Sutton and Andrew G. Barto. Reinforcement Learning-An Introduction. MIT Press, 1998.Google Scholar
  75. 75.
    Kirk Twardowski. Implementation of a Genetic Algorithm based Associative Classifier System (ACS). In Proceedings International Conference on Tools for Artificial Intelligence, 1990.Google Scholar
  76. 76.
    Nicolaas J. Vriend. On Two Types of GA-Learning. In S.H. Chen, editor, Evolutionary Computation in Economics and Finance. Springer, 1999. in press.Google Scholar
  77. 77.
    Nicolaas J. Vriend. The Difference Between Individual and Population Genetic Algorithms. In Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999 Banzhaf et al. [4], pages 812–812.Google Scholar
  78. 78.
    Nicolaas J. Vriend. An Illustration of the Essential Difference between Individual and Social Learning, and its Consequences for Computational Analyses. Journal of Economic Dynamics and Control, 24:1–19, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    C.J.C.H. Watkins. Learning from delayed reward. PhD Thesis, Cambridge University, Cambridge, England, 1989.Google Scholar
  80. 80.
    Thomas H. Westerdale. An Approach to Credit Assignment in Classifier Systems. Complexity, 4(2), 1999.Google Scholar
  81. 81.
    Stewart W. Wilson. Adaptive “cortical” pattern recognition. pages 188–196. Lawrence Erlbaum Associates: Pittsburgh, PA, July 1985.Google Scholar
  82. 82.
    Stewart W. Wilson. ZCS: A zeroth level classifier system. Evolutionary Computation, 2(1):1–18, 1994. http://prediction-dynamics.com/.CrossRefGoogle Scholar
  83. 83.
    Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation, 3(2):149–175, 1995. http://prediction-dynamics.com/.CrossRefGoogle Scholar
  84. 84.
    Stewart W. Wilson. Generalization in XCS. Unpublished contribution to the ICML’ 96 Workshop on Evolutionary Computing and Machine Learning. http://prediction-dynamics.com/, 1996.
  85. 85.
    Stewart W. Wilson. Generalization in the XCS classifier system. In Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors. Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann: San Francisco, CA, 1998 Koza et al. [44], pages 665–674. http://prediction-dynamics.com/.Google Scholar
  86. 86.
    Stewart W. Wilson. Get Real! XCS with Continuous-Valued Inputs. In Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classifier Systems: An Introduction to Contemporary Research, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000 Lanzi et al. [50], pages 209–220. (this volume).Google Scholar
  87. 87.
    Stewart W. Wilson. State of XCS Classifier System Research. In Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classifier Systems: An Introduction to Contemporary Research, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000 Lanzi et al. [50], pages 63–82. (this volume).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • John H. Holland
    • 1
  • Lashon B. Booker
    • 2
  • Marco Colombetti
    • 3
  • Marco Dorigo
    • 4
  • David E. Goldberg
    • 5
  • Stephanie Forrest
    • 6
  • Rick L. Riolo
    • 7
  • Robert E. Smith
    • 8
  • Pier Luca Lanzi
    • 3
  • Wolfgang Stolzmann
    • 9
  • Stewart W. Wilson
    • 5
    • 10
  1. 1.University of MichiganUSA
  2. 2.The MITRE CorporationUSA
  3. 3.Politecnico di MilanoItaly
  4. 4.IRIDIAUniversité Libre de BruxellesBelgium
  5. 5.University of Illinois at Urbana-ChampaignUSA
  6. 6.Santa Fe InstituteUSA
  7. 7.Center for Study of Complex SystemsUniversity of MichiganUSA
  8. 8.The Intelligent Computer Systems CentreThe University of The West of EnglandUK
  9. 9.University of WuerzburgGermany
  10. 10.Prediction DynamicsUSA

Personalised recommendations