Advertisement

Test Sets for Large Families of Languages

  • Wojciech Plandowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2710)

Abstract

We study the lower and upper bounds for sizes of test sets for the families of all languages, of commutative languages, of regular languages and of context-free languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.I. Appel, F.M. Djorup, On the equation z 1n z 2n...z kn = y n in a free semigroup, Trans. Amer. Math. Soc. 134(1968), 461–471.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M.H. Albert, J. Lawrence, A proof of Ehrenfeucht’s Conjecture, Theoret. Comput. Sci. 41(1985) 121–123.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M.H. Albert, J. Lawrence, The descending chain condition on solution sets for systems of equations in groups, Proc. Edinburg Math. Soc. 29(1985), 69–73.MathSciNetCrossRefGoogle Scholar
  4. 4.
    G. Baumslag, A. Myasnikov, V. Romankov, Two theorems about equationally noetherian groups, J. Algebra 194, 654–664, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Choffrut, J. Karhumäki, Combinatorics of words, chapter in G. Rozenberg, A. Salomaa (Eds.), Handbook of formal languages, Vol. 1, 329–438, Springer-Verlag, 1997.Google Scholar
  6. 6.
    K. Culik II, J. Karhumäki, Systems of equations over free monoids and Ehrenfeucht’s Conjecture, Discrete. Math. 43(1983), 139–153.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    V. Guba, The equivalence of infinite systems of equations in free groups and semigroups to finite subsystems, Matematiczeskije Zametki 40(3), September 1986 (in Russian).Google Scholar
  8. 8.
    I. Hakala, On word equations and the morphism equivalence problem for loop languages, Ph.D. Thesis, University of Oulu, Finland, 1997.zbMATHGoogle Scholar
  9. 9.
    I. Hakala, J. Kortelainen, On the system of word equations x 1i x 2i...x mi = y 1i y 2i...y ni (i=1, 2,...) in a free monoid, Acta Inform. 34(1997), 217–230.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    I. Hakala, J. Kortelainen, On the system of word equations x 0 u 1i x 1 u 2i x 2 u 3i x 3 = y 0 v 1i y 1 v 2i y 2 v 3i y 3 (i=0, 1, 2,... ) in a free monoid, Theoret. Comput. Sci. 225(1999), 149–161.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    I. Hakala, J. Kortelainen, Polynomial size test sets for commutative languages, Rairo Informatique Theorique et Applications 31(1997), 191–304.MathSciNetGoogle Scholar
  12. 12.
    T. Harju, J. Karhumäki, M. Petrich, Compactness of equations on completely regular semigroups, in J. Mycielski, G. Rozenberg, A. Salomaa (Eds.), Structures in Logic and Computer Science, LNCS 1261, 268–280, Springer-Verlag, 1997.Google Scholar
  13. 13.
    T. Harju, J. Karhumäki, W. Plandowski, Compactness of systems of equations in semigroups, Intern. J. Algebra Comput. 7, 457–470, 1997.zbMATHCrossRefGoogle Scholar
  14. 14.
    M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.zbMATHGoogle Scholar
  15. 15.
    S. Holub, Local and global cyclicity in free semigroups, Theoret. Comput. Sci. 262(2001), 25–36.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    S. Jarominek, J. Karhumäki, W. Rytter, Efficient constructions of test sets for regular and context-free languages, Theoret. Comput. Sci. 116(1993), 305–316.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    M.I. Kargapolov, Ju.I. Merzlakov, Basics of group theory, Nauka, 1982 (in Russian).Google Scholar
  18. 18.
    J. Karhumäki, W. Plandowski, On the Size of Independent Systems of Equations in Semigroups Theoret. Comput. Sci. 168(1): 105–119 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    J. Karhumäki, W. Plandowski, W. Rytter, Polynomial size test sets for context-free languages, J. Comput. Syst. Sci 50(1995), 11–19.zbMATHCrossRefGoogle Scholar
  20. 20.
    J. Kortelainen, On the system of word equations x 0 u 1i x 1...u m x m = y 0 v 1i y 1...v ni y n (i = 0, 1, 2,...) in a free monoid, Journal of Automata, Languages, and Combinatorics 3(1998), 43–58.zbMATHMathSciNetGoogle Scholar
  21. 21.
    J. Lawrence, The nonexistence of finite test set for set-equivalence of finite substitutions, Bull. EATCS 28, 34–37, 1986.zbMATHGoogle Scholar
  22. 22.
    M. Lothaire, Combinatorics on words, Vol. 17 of Encyclopedia of Mathematics and its Apllications, Addison-Wesley, 1983. Reprinted in the Cambridge Mathematical Library, Cambridge University Press, 1997.Google Scholar
  23. 23.
    M. Lothaire II, Algebraic Combinatorics on words, Vol. 90 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2002.Google Scholar
  24. 24.
    W. Plandowski, Testing equivalence of morphisms on context-free languages, in Lect. Notes in Comput. Sci. 855, 460–470, 1994.Google Scholar
  25. 25.
    W. Plandowski, The complexity of the morphism equivalence problem for context-free languages, Ph.D. Thesis, Warsaw University, 1995.Google Scholar
  26. 26.
    W. Plandowski, personal communication.Google Scholar
  27. 27.
    E.T. Poulsen, The ehrenfeucht conjecture: an algebra framework for its proof Aarhus Universitet, Matematisk Institut, 1985.Google Scholar
  28. 28.
    A. Salomaa, The ehrenfeucht conjecture: a proof for language theorist, manuscript.Google Scholar
  29. 29.
    J. Stalings, Finiteness properties of matrix representations, manuscript.Google Scholar
  30. 30.
    P. Turakainen, The equivalence of deterministic gsm replications on Q-rational languages is decidable, Math. Systems Theory 20(1987), 273–282.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    P. Turakainen, The equivalence of dgsm replications on Q-rational languages is decidable, Proc. ICALP’88, LNCS 317, 654–666, Springer-Verlag, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wojciech Plandowski
    • 1
  1. 1.Institute of InformaticsUniversity of WarsawWarszawaPoland

Personalised recommendations