Advertisement

On Three Classes of Automata-Like P Systems

  • Rudolf Freund
  • Carlos Martín-Vide
  • Adam Obtułowicz
  • Gheorghe Păun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2710)

Abstract

We investigate the three classes of accepting P systems considered so far, namely the P automata of Csuhaj-Varjú, Vaszil [3], their variant introduced by Madhu, Krithivasan [10], and the related machinery of Freund, Oswald [5]. All three variants of automata-like P systems are based on symport/antiport rules. For slight variants of the first two classes we prove that any recursively enumerable language can be recognized by systems with only two membranes (this considerably improves the result from [3], where systems with seven membranes were proved to be universal). We also introduce the initial mode of accepting strings (the strings are introduced into the system, symbol by symbol, at the beginning of a computation), and we briefly investigate this mode for the three classes of automata, especially for languages over a one-letter alphabet. Some open problems are formulated, too.

Keywords

Mathematical Linguistics Initial Mode Terminal Symbol Register Machine Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardini, F., Manca, V.: P Systems with Boundary Rules. In: Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing 2002. LNCS, Vol. 2597. Springer-Verlag, Berlin Heidelberg New York (2003) [14] 107–118CrossRefGoogle Scholar
  2. 2.
    Csuhaj-Varjú, E., Martín-Vide, C., Mitrana, V.: Multiset Automata. In: Calude, C.S., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing. LNCS, Vol. 2235. Springer-Verlag, Berlin Heidelberg New York (2001) 69–84CrossRefGoogle Scholar
  3. 3.
    Csuhaj-Varjú, E., Vaszil, G.: P Automata. In: Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing 2002. LNCS, Vol. 2597. Springer-Verlag, Berlin Heidelberg New York (2003) [14] 219–233CrossRefGoogle Scholar
  4. 4.
    Freund, R., Oswald, M.: P Systems with Activated/Prohibited Membrane Channels. In: Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing 2002. LNCS, Vol. 2597. Springer-Verlag, Berlin Heidelberg New York (2003) [14] 261–269CrossRefGoogle Scholar
  5. 5.
    Freund, R., Oswald, M.: A Short Note on Analysing P Systems. Bulletin of the EATCS 78 (October 2002) 231–236MathSciNetGoogle Scholar
  6. 6.
    Freund, R., Păun, A.: Membrane Systems with Symport/Antiport: Universality Results. In: Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing 2002. LNCS, Vol. 2597. Springer-Verlag, Berlin Heidelberg New York (2003) [14] 270–287CrossRefGoogle Scholar
  7. 7.
    Freund, R., Păun, Gh.: On the Number of Non-terminal Symbols in Graph-controlled, Programmed and Matrix Grammars. In: Margenstern, M., Rogozhin, Y. (eds.): Proc. Conf. Universal Machines and Computations, Chişinău, 2001. LNCS, Vol. 2055. Springer-Verlag, Berlin Heidelberg New York (2001) 214–225CrossRefGoogle Scholar
  8. 8.
    Freund, R., Sosík, P.: P Systems without Priorities Are Computationally Universal. In: Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing 2002. LNCS, Vol. 2597. Springer-Verlag, Berlin Heidelberg New York (2003) [14] 400–409Google Scholar
  9. 9.
    Frisco, P., Hoogeboom, H.J.: Simulating Counter Automata by P Systems with Symport/Antiport. In: Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing 2002. LNCS, Vol. 2597. Springer-Verlag, Berlin Heidelberg New York (2003) [14] 288–301CrossRefGoogle Scholar
  10. 10.
    Madhu, M., Krithivasan, K.: On a Class of P Automata, manuscript (2002)Google Scholar
  11. 11.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New Jersey, USA (1967)zbMATHGoogle Scholar
  12. 12.
    Păun, A., Păun, Gh.: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing 20,3 (2002) 295–306zbMATHCrossRefGoogle Scholar
  13. 13.
    Păun, Gh.: Membrane Computing: An Introduction. Springer-Verlag, Berlin Heidelberg New York (2002)zbMATHGoogle Scholar
  14. 14.
    Păun, Gh, Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing 2002. LNCS, Vol. 2597. Springer-Verlag, Berlin Heidelberg New York (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rudolf Freund
    • 1
  • Carlos Martín-Vide
    • 2
  • Adam Obtułowicz
    • 3
  • Gheorghe Păun
    • 4
    • 2
  1. 1.Department of Computer ScienceTechnische Universität WienWienAustria
  2. 2.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain
  3. 3.Institute of Mathematics of the Polish Academy of SciencesWarsawPoland
  4. 4.Institute of Mathematics of the Romanian AcademyBucureştiRomania

Personalised recommendations