Advertisement

Quantum Computing: 1-Way Quantum Automata

  • Alberto Bertoni
  • Carlo Mereghetti
  • Beatrice Palano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2710)

Abstract

In this paper we analyze several models of 1-way quantum finite automata, in the light of formal power series theory. In this general context, we recall two well known constructions, by proving:
  1. 1.

    Languages generated with isolated cut-point by a class of bounded rational formal series are regular.

     
  2. 2.

    If a class of formal series is closed under f-complement, Hadamard product and convex linear combination, then the class of languages generated with isolated cut-point is closed under boolean operations.

     

We introduce a general model of 1-way quantum automata and we compare their behaviors with those of measure-once, measure-many and reversible 1-way quantum automata.

Keywords

formal power series quantum finite automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths, weaknesses and generalizations. In Proc. 39th Symposium on Foundations of Computer. Science, pp. 332–342, 1998.Google Scholar
  2. 2.
    A. Ambainis, A. Kikusts, and M. Valdats. On the class of languages recognizable by 1-way quantum finite automata. In Proc. 18th Annual Symposium on Theoretical. Aspects of Computer Science, LNCS 2010, Springer, pp. 305–316, 2001. Also as Technical Report quant-ph/0001005.Google Scholar
  3. 3.
    L. Baldi and G. Cerofolini. La Legge di Moore e lo sviluppo dei circuiti integrati. Mondo Digitale, 3:3–15, 2002 (in Italian).Google Scholar
  4. 4.
    P. Benioff. Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys., 29:515–546, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Berstel and C. Reutenauer. Rational series and their languages. EATCS Monographs on Theoretical Computer Science, vol. 12, Springer-Verlag, 1988.Google Scholar
  6. 6.
    A. Bertoni and M. Carpentieri. Regular languages accepted by quantum automata. Information and Computation, 165:174–182, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Bertoni and M. Carpentieri. Analogies and differences between quantum and stochastic automata. Theoretical Computer Science, 262:69–81, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Brodsky and N. Pippenger. Characterizations of 1-way quantum finite automata. Technical Report TR-99-03, Department of Computer Science, University of British Columbia, 2000.Google Scholar
  9. 9.
    E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26:1411–1473, 1997. A preliminary version appeared in Proc. 25th ACM Symp. on. Theory of Computation, pp. 11-20, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A, 400:97–117, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. Feynman. Simulating physics with computers. Int. J. Theoretical Physics, 21:467–488, 1982.CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Golovkins and M. Kravtsev. Probabilistic Reversible Automata and Quantum Automata. In Proc. 8th International Computing and Combinatorics Conference, LNCS 2387, Springer, pp. 574–583, 2002Google Scholar
  13. 13.
    L. Grover. A fast quantum mechanical algorithm for database search. In Proc. 28th ACM Symposium on Theory of Computing, pp. 212–219, 1996.Google Scholar
  14. 14.
    J. Gruska. Quantum Computing. McGraw-Hill, 1999.Google Scholar
  15. 15.
    J. Gruska. Descriptional complexity issues in quantum computing. J. Automata, Languages and Combinatorics, 5:191–218, 2000.zbMATHMathSciNetGoogle Scholar
  16. 16.
    W. Höffdings. Probability inequalities for sums of bounded random variables. J. American Statistical Association, 58:13–30, 1963.CrossRefGoogle Scholar
  17. 17.
    A. Kondacs and J. Watrous. On the power of quantum finite state automata. In 38th Symposium on Foundations of Computer Science, pp. 66–75, 1997.Google Scholar
  18. 18.
    M. Marcus and H. Minc. Introduction to Linear Algebra. The Macmillan Company, 1965. Reprinted by Dover, 1988.Google Scholar
  19. 19.
    M. Marcus and H. Minc. A Survey of Matrix Theory and Matrix Inequalities. Prindle, Weber & Schmidt, 1964. Reprinted by Dover, 1992.Google Scholar
  20. 20.
    G.E. Moore. Progress in Digital Integrated Electronics. In Digest of the 1975. International Electron Devices Meeting, IEEE, pp. 11–13, 1975.Google Scholar
  21. 21.
    C. Moore and J. Crutchfield. Quantum automata and quantum grammars. Theoretical. Computer Science, 237:275–306, 2000. A preliminary version of this work appears as Technical Report in 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    A. Nayak. Optimal lower bounds for quantum automata and random access codes. In Proc. 40th Symposium on Foundations of Computer Science. pp. 369–376, 1999.Google Scholar
  23. 23.
    A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.Google Scholar
  24. 24.
    J.E. Pin. On languages accepted by finite reversible automata. In Proc. 14th. International Colloquium on Automata, Languages and Programming, LNCS 267, pp. 237–249. Springer-Verlag, 1987.Google Scholar
  25. 25.
    M. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.CrossRefGoogle Scholar
  26. 26.
    P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26:1484–1509, 1997. A preliminary version appeared in Proc. 35th IEEE Symp. on Foundations. of Computer Science, pp. 20–22, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    M.P. Schützenberger. On the definition of a family of automata. Information and. Control, 4:245–270, 1961.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Texts and Monographs in Computer Science, Springer-Verlag, 1978.Google Scholar
  29. 29.
    P. Turakainen. Generalized automata and stochastic languages. Proc. Amer. Math. Soc., 21:303–309, 1969.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alberto Bertoni
    • 1
  • Carlo Mereghetti
    • 1
  • Beatrice Palano
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations