Skip to main content

Unary Language Operations and Their Nondeterministic State Complexity

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2450))

Included in the following conference series:

Abstract

We investigate the costs, in terms of states, of operations on infinite and finite unary regular languages where the languages are represented by nondeterministic finite automata. In particular, we consider Boolean operations, concatenation, iteration, and λ-free iteration. Most of the bounds are tight in the exact number of states, i.e. the number is sufficient and necessary in the worst case. For the complementation of infinite languages a tight bound in the order of magnitude is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, P. and Lingas, A. On the complexity of regular languages in terms of finite automata. Technical Report 304, Polish Academy of Sciences, 1977.

    Google Scholar 

  2. Birget, J.-C. State-complexity of finite-state devices, state compressibility and incompressibility. Mathematical Systems Theory 26 (1993), 237–269.

    Article  MATH  MathSciNet  Google Scholar 

  3. Chrobak, M. Finite automata and unary languages. Theoretical Computer Science 47 (1986), 149–158.

    Article  MATH  MathSciNet  Google Scholar 

  4. Holzer, M. and Kutrib, M. State complexity of basic operations on nondeterministic finite automata. Implementation and Application of Automata (CIAA’ 02), 2002, pp. 151–160.

    Google Scholar 

  5. Hopcroft, J. E. and Ullman, J. D. Introduction to Automata Theory, Language, and Computation. Addison-Wesley, Reading, Massachusetts, 1979.

    Google Scholar 

  6. Hunt, H. B., Rosenkrantz, D. J., and Szymanski, T. G. On the equivalence, containment, and covering problems for the regular and context-free languages. Journal of Computer and System Sciences 12 (1976), 222–268.

    MATH  MathSciNet  Google Scholar 

  7. Jiang, T. and Ravikumar, B. Minimal NFA problems are hard. SIAM Journal on Computing 22 (1993), 1117–1141.

    Article  MATH  MathSciNet  Google Scholar 

  8. Landau, E. Über die Maximalordnung der Permutationen gegebenen Grades. Archiv der Math. und Phys. 3 (1903), 92-103.

    Google Scholar 

  9. Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen. Teubner, Leipzig, 1909.

    Google Scholar 

  10. Mereghetti, C. and Pighizzini, G. Two-way automata simulations and unary languages. Journal of Automata, Languages and Combinatorics 5 (2000), 287–300.

    MATH  MathSciNet  Google Scholar 

  11. Mereghetti, C. and Pighizzini, G. Optimal simulations between unary automata. SIAM Journal on Computing 30 (2001), 1976–1992.

    Article  MathSciNet  Google Scholar 

  12. Nicaud, C. Average state complexity of operations on unary automata. Mathematical Foundations of Computer Science (MFCS’ 99) LNCS 1672, 1999, pp. 231–240.

    Chapter  Google Scholar 

  13. Pighizzini, G. and Shallit, J. O. Unary language operations, state complexity and Jacobsthal’s function. International Journal of Foundations of Computer Science 13 (2002), 145–159.

    Article  MATH  MathSciNet  Google Scholar 

  14. Sakoda, W. J. and Sipser, M. Nondeterminism and the size of two way finite automata. ACM Symposium on Theory of Computing (STOC’ 78), 1978, pp. 275–286.

    Google Scholar 

  15. Salomaa, K. and Yu, S. NFA to DFA transformation for finite languages over arbitrary alphabets. Journal of Automata, Languages and Combinatorics 2 (1997), 177–186.

    MATH  MathSciNet  Google Scholar 

  16. Shallit, J. O. and Ellul, K. Personal communication, October 2002.

    Google Scholar 

  17. Sipser, M. Lower bounds on the size of sweeping automata. Journal of Computer and System Sciences 21 (1980), 195–202.

    Article  MATH  MathSciNet  Google Scholar 

  18. Stockmeyer, L. J. and Meyer, A. R. Word problems requiring exponential time. ACM Symposium on Theory of Computing (STOC’ 73), 1973, pp. 1–9.

    Google Scholar 

  19. Szalay, M. On the maximal order in Sn and S.n. Acta Arithm. 37 (1980), 321–331.

    MATH  MathSciNet  Google Scholar 

  20. Yu, S. State complexity of regular languages. Journal of Automata, Languages and Combinatorics 6 (2001), 221–234.

    MATH  MathSciNet  Google Scholar 

  21. Yu, S. State complexity of finite and infinite regular languages. Bulletin of the EATCS 76 (2002), 142–152.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzer, M., Kutrib, M. (2003). Unary Language Operations and Their Nondeterministic State Complexity. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2002. Lecture Notes in Computer Science, vol 2450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45005-X_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45005-X_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40431-6

  • Online ISBN: 978-3-540-45005-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics