Skip to main content

The Role of Geographical Slant in Virtual Environment Navigation

  • Conference paper
  • First Online:
Spatial Cognition III (Spatial Cognition 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2685))

Included in the following conference series:

Abstract

We investigated the role of geographical slant in simple navigation and spatial memory tasks, using an outdoor virtual environment. The whole environment couldb e slanted by an angle of 4°. Subjects could interact with the virtual environment by pedaling with force-feedback on a bicycle simulator (translation) or by hitting buttons (discrete rotations in 60° steps). After memory acquisition, spatial knowledge was accessed by three tasks: (i) pointing from various positions to the learned goals; (ii) choosing the more elevated of two landmarks from memory; (iii) drawing a sketch map of the environment. The number of navigation errors (wrong motion decisions with respect to the goal) was significantly reduced in the slanted conditions. Furthermore, we found that subjects were able to point to currently invisible targets in virtual environments. Adding a geographical slant improves this performance. We conclude that geographical slant plays a role either in the construction of a spatial memory, or in its readout, or in both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batschelet, E. (1981). Circular Statistics in Biology. Academic Press, London.

    MATH  Google Scholar 

  • Brown, P. and Levinson, S. C. (1993). “Uphill” and “Downhill” in Tzeltal. Journal of Linguistic Anthropology, 3(1):46–74.

    Article  Google Scholar 

  • Cartwright, B. A. and Collett, T. S. (1982). How honey bees use landmarks to guide their return to a food source. Nature, 295:560–564.

    Article  Google Scholar 

  • Creem, S. H. and Proffitt, D. R. (1998). Two memories for geographical slant: Separation and interdependence of action and awareness. Psychonomic Bulletin & Review, 5:22–36.

    Google Scholar 

  • Gärling, T., Book, A., Lindberg, E., and Arce, C. (1990). Is elevation encoded in cognitive maps. Journal of Environmental Psychology, 10:341–351.

    Article  Google Scholar 

  • Gillner, S. and Mallot, H. A. (1998). Navigation and acquisition of spatial knowledge in a virtual maze. Journal of Cognitive Neuroscience, 10:445–463.

    Article  Google Scholar 

  • Gouteux, S. and Spelke, E. S. (2001). Children’s use of geometry and landmarks to reorient in an open space. Cognition, 81:119–148.

    Article  Google Scholar 

  • Hermer, L. and Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370:57–59.

    Article  Google Scholar 

  • Hübner, W. and Mallot, H. A. (2002). Integration of metric place relations in a landmark graph. In Dorronsoro, J. R., editor, International Conference on Artificial Neural Networks (ICANN 2002), Lecture Notes in Computer Science. Springer Verlag.

    Google Scholar 

  • Janzen, G., Herrmann, T., Katz, S., and Schweizer, K. (2000). Oblique angled intersections and barriers: Navigating through a virtual maze. Lecture Notes in Computer Science, 1849:277–294.

    Google Scholar 

  • Kuipers, B. (2000). The spatial semantic hierarchy. Artificial Intelligence, 119:191–233.

    Article  MATH  MathSciNet  Google Scholar 

  • Levinson, S. C. (1996). Frames of reference and Molyneux’s question: Crosslinguistic studies. In Bloom, P., Peterson, M. A., Nadel, L., and Garrett, M. F., editors, Language and Space, pages 109–169. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Mallot, H. (2000). Computational Vision. Information Processing in Perception and Visual Behavior, chapter Visual Navigation. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Mallot, H. A. and Gillner, S. (2000). Route navigation without place recognition: what is recognized in recognition-triggered responses? Perception, 29:43–55.

    Article  Google Scholar 

  • Maurer, R. and Séguinot, V. (1995). What is modelling for? A critical review of the models of path integration. Journal of theoretical Biology, 175:457–475.

    Article  Google Scholar 

  • Mochnatzki, H. (1999). Die Rolle von Hangneigungen beim Aufbau eines Ortsgedächtnisses: Verhaltensversuche in Virtuellen Umgebungen. Diploma thesis, Fakultät für Biologie, Univ. Tübingen.

    Google Scholar 

  • Moghaddam, M., Kaminsky, Y. L., Zahalka, A., and Bures, J. (1996). Vestibular navigation directed by the slope of terrain. Proceedings of the National Academy of Sciences, USA, 93:3439–3443.

    Article  Google Scholar 

  • Montello, D. R., Richardson, A. E., Hegarty, M., and Provenza, M. (1999). A comparison of methods for estimating directions in egocentric space. Perception, 28:981–1000.

    Article  Google Scholar 

  • Müller, M. and Wehner, R. (1988). Path integration in desert ants, cataglyphis fortis. Proceedings of the National Academy of Sciences, USA, 85:5287–5290.

    Article  Google Scholar 

  • Proffitt, D. R., Bhalla, M., Gossweiler, R., and Midgett, J. (1995). Perceiving geographical slant. Psychonomic Bulletin & Review, 2:409–428.

    Google Scholar 

  • Proffitt, D. R., Creem, S. H., and Zosh, W. D. (2001). Seeing mountains in mole hills: geographical-slant perception. Psychological Science, 12:418–423.

    Article  Google Scholar 

  • Rossel, S. (1993). Navigation by bees using polarized skylight. Comparative Biochemistry & Physiology, 104A:695–708.

    Article  Google Scholar 

  • Steck, S. D. and Mallot, H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence. Teleoperators and Virtual Environments, 9:69–83.

    Article  Google Scholar 

  • Veen, H. A. H. C. v., Distler, H. K., Braun, S. J., and Bultho., H. H. (1998). Navigating through a virtual city: Using virtual reality technology to study human action and perception. Future Generation Computer Systems, 14:231–242.

    Article  Google Scholar 

  • Wohlgemuth, S., Ronacher, R., and Wehner, R. (2001). Ant odometry in the third dimension. Nature, 411: 795–798.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steck, S.D., Mochnatzki, H.F., Mallot, H.A. (2003). The Role of Geographical Slant in Virtual Environment Navigation. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds) Spatial Cognition III. Spatial Cognition 2002. Lecture Notes in Computer Science, vol 2685. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45004-1_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45004-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40430-9

  • Online ISBN: 978-3-540-45004-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics