Skip to main content

Non-Covalent Synthesis of Metallodendrimers

  • Chapter
  • First Online:
Dendrimers IV

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 217))

Abstract

The field of dendrimers has undergone an explosive growth since the first dendritic structures were reported two decades ago. These three-dimensional, highly branched macromolecules have attracted interest from such diverse areas as polymeric, organic, inorganic, biomedical, theoretical, and physical chemistry. Future applications were already hypothesized from the early days of dendrimer research. From an application point of view, the incorporation of a range of metals into the dendritic framework is of particular interest. The resulting metallodendrimers might be applied in fields such as catalysis, sensors, medical diagnosis, light-harvesting devices, and nanoparticles. In this chapter, metallodendrimers are discussed in which the metals are essential for maintaining the dendritic structure. This means that all the dendrimers described have been assembled non-covalently using coordination chemistry. Although this restriction narrows the metallodendrimer field significantly, there is still an enormous variety in the architecture of reported non-covalent metallodendrimers. Where possible, emphasis is placed on the characterization methods and specific behavior of the dendrimers, because characterization is of utmost importance in establishing their often complicated three-dimensional structure. Finally, we have emphasized properties that may lead to future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References and Notes

  1. (a) Flory PJ (1941) J Am Chem Soc 63:3083–3090; (b) (1941) J Am Chem Soc 63:3091–3096; (c) (1941) J Am Chem Soc 63:3096–3100

    Article  CAS  Google Scholar 

  2. Buhleier E, Wehner W, Vögtle F (1978) Synthesis 155–158

    Google Scholar 

  3. Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) Polym J 17:117–132

    Article  CAS  Google Scholar 

  4. Newkome GR, Yao Z-Q, Baker GR, Gupta K (1985) J Org Chem 50:2003–2004

    Article  CAS  Google Scholar 

  5. For reviews including discussions on dendritic growth strategies, see: (a) Matthews OA, Shipway AN, Stoddart JF (1998) Prog Polym Sci 23:1–56; (b) Chow H-F, Mong TK-K, Nongrum MF, Wan C-W (1998) Tetrahedron 54:8543–8660

    Article  CAS  Google Scholar 

  6. For an overview, see: Cuadrado I, Morán M, Casado CM, Alonso B, Losada J (1999) Coord Chem Rev 193–195:395–445

    Article  Google Scholar 

  7. For examples, see: (a) Knapen JWJ, van der Made AW, de Wilde JC, van Leeuwen PWNM, Wijkens P, Grove DM, van Koten G (1994) Nature 372:659–663; (b) Reetz MT, Lohmer G, Schwickardi R (1997) Angew Chem Int Ed Engl 36:1526–1529; (c) Bourque SC, Maltais F, Xiao W-J, Tardif O, Alper H, Arya P, Manzer LE (1999) J Am Chem Soc 121:3035–3038

    Article  CAS  Google Scholar 

  8. (a) Newkome GR, Moorefield CN (1993) Polym Prepr 34:75–76; (b) Newkome GR, Gross J, Moorefield CN, Woosley BD (1997) Chem Commun 515–516

    CAS  Google Scholar 

  9. (a) Ottaviani MF, Bossmann S, Turro NJ, Tomalia DA (1994) J Am Chem Soc 116:661–671; (b) Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877–4878; (c) Zhao M, Crooks RM (1999) Angew Chem Int Ed 38:364–366; (d) Balogh L, Tomalia DA (1998) J Am Chem Soc 120:7355–7356

    Article  CAS  Google Scholar 

  10. (a) Newkome GR, He E, Moorefield CN (1999) Chem Rev 99:1689–1746; (b) Bosman AW, Janssen HM, Meijer EW (1999) Chem Rev 99:1665–1688; (c) Fischer M, Vögtle F (1999) Angew Chem Int Ed 38:884–905; (d) Hearshaw MA, Moss JR (1999) Chem Commun 1–8; (e) Gorman CB (1998) Adv Mater 10:295–309; (f) Zeng F, Zimmerman SC (1997) Chem Rev 97:1681–1712; (g) Newkome GR, Moorefield CN, Vögtle F (1996) Dendritic macromolecules: concepts, syntheses, perspectives. VCH, Weinheim, Germany

    Article  CAS  Google Scholar 

  11. Majoral J-P, Caminade A-M (1999) Chem Rev 99:845–880

    Article  CAS  Google Scholar 

  12. (a) Peerlings HWI, Meijer EW (1997) Chem Eur J 3:1563–1570; (b) Seebach D, Reiner PB, Greiveldinger G, Butz T, Sellner H (1998) Top Curr Chem 197:125–164

    Article  CAS  Google Scholar 

  13. Jayaraman N, Nepogodiev SA, Stoddart JF (1997) Chem Eur 3:1193–1199

    Article  CAS  Google Scholar 

  14. Schlüter AD, Rabe JP (2000) Angew Chem Int Ed 39:864–883

    Article  Google Scholar 

  15. Krause W, Hackmann-Schlichter N, Maier FK, Müller R (2000) Top Curr Chem 210:261–308

    Article  CAS  Google Scholar 

  16. Hawker CJ, Wooley KL, Fréchet JMJ (1993) J Am Chem Soc 115:4375–4376

    Article  CAS  Google Scholar 

  17. (a) Bertini I, Gray HB, Lippard SJ, Valentine JS (1994) Bioinorganic chemistry. University Science Books, Mill Valley, USA; (b) Stryer L (1995) Biochemistry, 4th edn. Freeman, New York, USA

    Google Scholar 

  18. (a) Mahler G, May V, Schreiber M (eds) (1996) Molecular electronics: properties, dynamics and applications. Marcel Dekker, New York; (b) Lazarev PI (ed) (1991) Molecular electronics: materials and methods. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  19. (a) Dandliker PJ, Diederich F, Gross M, Knobler CB, Louati A, Sanford EM (1994) Angew Chem Int Ed Engl 33:1739–1742; (b) Dandliker PJ, Diederich F, Gisselbrecht J-P, Louati A, Gross M (1995) Angew Chem Int Ed Engl 34:2725–2728; (c) Weyermann P, Gisselbrecht J-P, Boudon C, Diederich F, Gross M (1999) Angew Chem Int Ed 38:3215–3219

    Article  Google Scholar 

  20. Gorman CB, Parkhurst BL, Su WY, Chen K-Y (1997) J Am Chem Soc 119:1141–1142

    Article  CAS  Google Scholar 

  21. Gorman CB, Hager MW, Parkhurst BL, Smith JC (1998) Macromolecules 31:815–822

    Article  CAS  Google Scholar 

  22. Gorman CB, Smith JC, Hager MW, Parkhurst BL, Sierzputowska-Gracz H, Haney CA (1999) J Am Chem Soc 121:9958–9966

    Article  CAS  Google Scholar 

  23. Moore JS (1997) Acc Chem Res 30:402–413

    Article  CAS  Google Scholar 

  24. Gorman CB, Su WY, Jiang H, Watson CM, Boyle P (1999) Chem Commun 877–878

    Google Scholar 

  25. Wang R, Zheng Z (1999) J Am Chem Soc 121:3549–3550

    Article  CAS  Google Scholar 

  26. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Coord Chem Rev 84:85–277

    Article  CAS  Google Scholar 

  27. Issberner J, Vögtle F, De Cola L, Balzani V (1997) Chem Eur J 3:706–712

    Article  CAS  Google Scholar 

  28. (a) Newkome GR, Nayak A, Behera RK, Moorefield CN, Baker GR (1992) J Org Chem 57:358–362; (b) Newkome GR, Moorefield CN, Baker GR, Behera RK, Escamilia GH, Saunders MJ (1992) Angew Chem Int Ed Engl 31:917-919

    Article  CAS  Google Scholar 

  29. Mattai S, Seiler P, Diederich F, Gramlich V (1995) Helv Chim Acta 78:1904–1912

    Article  Google Scholar 

  30. Plevoets M, Vögtle F, De Cola L, Balzani V (1999) New J Chem 63–69

    Google Scholar 

  31. Other dendritic antenna systems have been reported. See the work of Balzani and coworkers in the “metals as branching centers”section and also: (a) Steward GM, Fox MA (1996) J Am Chem Soc 118:4354–4360; (b) Shorttreed MR, Swallen SF, Shi ZY, Tan W, Xu Z, Devadoss C, Moore JS, Kopelman R (1997) J Phys Chem B 101:6318–6322

    Article  Google Scholar 

  32. Vögtle F, Plevoets M, Nieger M, Azzellini GC, Credi A, De Cola L, De Marchis V, Venturi M, Balzani V (1999) J Am Chem Soc 121:6290–6298

    Article  Google Scholar 

  33. Hoffman MZ, Bolletta F, Moggi L, Hug GL (1989) J Phys Chem Ref Data 18:219–544

    Article  CAS  Google Scholar 

  34. Chow H-F, Chan IY-K, Chan DTW, Kwok RWM (1996) Chem Eur J 2:1085–1091

    Article  CAS  Google Scholar 

  35. Armstrong FA, Hill HAO, Walton NJ (1988) Acc Chem Res 21:407–413

    Article  CAS  Google Scholar 

  36. Gray HB, Winkler JR (1996) Ann Rev Biochem 65:537–561

    Article  CAS  Google Scholar 

  37. Newkome GR, Güther R, Moorefield CN, Cardullo F, Echegoyen L, Pérez-Cordero E, Luftmann H (1995) Angew Chem Int Ed Engl 34:2023–2026

    Article  CAS  Google Scholar 

  38. Tomoyoso Y, Jiang D-L, Jin R-H, Aida T, Yamashita T, Horie K, Yashima E, Okamoto Y (1996) Macromolecules 29:5236–5238

    Article  Google Scholar 

  39. Darling SL, Mak CC, Bampos N, Feeder N, Teat SJ, Sanders JKM (1999) New J Chem 23:359–364

    Article  CAS  Google Scholar 

  40. There is a vast amount of literature on multiporphyrin systems. For some representative covalent multiporphyrin arrays, see: (a) Wagner RW, Johnson TE, Lindsey JS (1996) J Am Chem Soc 118:11, 166–11, 180; (b) Officer DL, Burrell AK, Reid DC (1996) Chem Commun 1657–1658; (c) Mak CC, Bampos N, Sanders JKM (1998) Angew Chem Int Ed Engl 37:3020–3023; (d) Yeow EKL, Ghiggino KP, Reek JNH, Crossley MJ, Bosman AW, Schenning APHJ, Meijer EW (2000) J Phys Chem B 104:2596–2606; (e) Aratani N, Osuka A, Kim YH, Heong DH, Kim D (2000) Angew Chem Int Ed 39:1458–1462

    Article  Google Scholar 

  41. Non-covalently constructed multiporphyrin arrays: (a) Sessler JL, Wang B, Springs SL, Brown CT (1996) Electron-and energy-transfer reactions in noncovalently linked supramolecular model systems. In: Lehn J-M, Atwood JL, Davis JED, MacNicol DD, Vögtle F (eds) Comprehensive supramolecular chemistry. Pergamon, Oxford, UK, 1987–1996, vol 4, chap 9; (b) Harriman A, Sauvage J-P (1996) Chem Soc Rev 25:41–48; (c) Ward MD (1997) Chem Soc Rev 26:365–375; (d) Drain CM, Nifiatis F, Vasenko A, Batteas JD (1998) Angew Chem Int Ed 37:2344–2347; (e) Drain CM, Russell KC, Lehn J-M (1996) Chem Commun 337–338; (f) Reek JNH, Schenning APHJ, Bosman AW, Meijer EW, Crossley MJ (1998) Chem Commun 11–12; (g) Huck WTS, Rohrer A, Anilkumar AT, Fokkens RH, Nibbering NMM, van Veggel FCJM, Reinhoudt DN (1998) New J Chem 22:165–168

    Google Scholar 

  42. Enomoto M, Aida T (1999) J Am Chem Soc 121:874–875

    Article  CAS  Google Scholar 

  43. Catalano VJ, Parodi N (1997) Inorg Chem 36:537–541

    Article  CAS  Google Scholar 

  44. Balch AL, Catalano VJ, Lee JW, Olmstead MM, Parkin SR (1991) J Am Chem Soc 113:8953–8955

    Article  CAS  Google Scholar 

  45. Kawa M, Fréchet JMJ (1998) Chem Mater 10:286–296

    Article  CAS  Google Scholar 

  46. Venturi M, Serroni S, Juris A, Campagna S, Balzani V (1998) Top Curr Chem 197:193–228

    Article  CAS  Google Scholar 

  47. Campagna S, Denti G, Sabatino L, Serroni S, Ciano M, Balzani V (1989) J Chem Soc Chem Commun 1500–1501

    Google Scholar 

  48. Denti G, Campagna S, Serroni S, Ciano M, Balzani V (1992) J Am Chem Soc 114:2944–2950

    Article  CAS  Google Scholar 

  49. Kim M-J, MacDonnell FM, Gimon-Kinsel ME, du Bois T, Asgharian N, Griener JC (2000) Angew Chem Int Ed 39:615–619

    Article  CAS  Google Scholar 

  50. Juris A, Balzani V, Campagna S, Denti G, Serroni S, Frei G, Güdel HU (1994) Inorg Chem 33:1491–1496

    Article  CAS  Google Scholar 

  51. Campagna S, Giannetto A, Serroni S, Denti G, Trusso S, Mallamace F, Micali N (1995) JAm Chem Soc 117:1754–1758

    Article  CAS  Google Scholar 

  52. Serroni S, Denti G, Campagna S, Juris A, Ciano M, Balzani V (1992) Angew Chem Int Ed Engl 31:1493–1495

    Article  Google Scholar 

  53. The protected decanuclear dendrimer and its deprotected analog were reported later in a paper describing generalized versions of the synthetic strategies: Campagna S, Denti G, Serroni S, Juris A, Venturi M, Ricevuto V, Balzani V (1995) Chem Eur J 1:211–221

    Article  CAS  Google Scholar 

  54. Serroni S, Juris A, Venturi M, Campagna S, Resino IR, Denti G, Credi A, Balzani V (1997) J Mater Chem 7:1227–1236

    Article  CAS  Google Scholar 

  55. For an overview of luminescent and redox-active polynuclear transition metal complexes, see: Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996) Chem Rev 96:759–833

    Article  CAS  Google Scholar 

  56. Moucheron C, Kirsch-De Mesmaeker A, Dupont-Gervais A, Leize E, van Dorsselaer A (1996) J Am Chem Soc 118:12, 834–12, 835

    Article  Google Scholar 

  57. Latterini L, Schweitzer G, De Schrijver FC, Moucheron C, Kirsch-De Mesmaeker A (1997) Chem Phys Lett 281:267–271

    Article  CAS  Google Scholar 

  58. Latterini L, Pourtois G, Moucheron C, Lazzaroni R, Brédas J-L, Kirsch-De Mesmaeker A, De Schrijver FC (2000) Chem Eur J 6:1331–1336

    Article  CAS  Google Scholar 

  59. MacDonnell FM, Bodige S (1996) Inorg Chem 35:5758–5759

    Article  CAS  Google Scholar 

  60. Bodige S, Torres AS, Maloney DJ, Tate D, Kinsel GR, Walker AK, MacDonnell FM (1997) J Am Chem Soc 119:10,364–10,369

    Article  CAS  Google Scholar 

  61. Kim M-J, MacDonnell FM, Gimon-Kinsel ME, Du Bois T, Asgharian N, Griener JC (2000) Angew Chem Int Ed 39:615–619

    Article  CAS  Google Scholar 

  62. Achar S, Puddephatt RJ (1994) Angew Chem Int Ed Engl 33:847–849

    Article  Google Scholar 

  63. (a) Achar S, Puddephatt RJ (1994) J Chem Soc Chem Commun 1895–1896; (b) Achar S, Vittal JJ, Puddephatt RJ (1996) Organometallics 15:43–50

    Google Scholar 

  64. Achar S, Puddephatt RJ (1995) Organometallics 14:1681–1687

    Article  CAS  Google Scholar 

  65. Achar S, Immoos CE, Hill MG, Catalano V (1997) J Inorg Chem 36:2314–2320

    Article  CAS  Google Scholar 

  66. Liu G-X, Puddephatt RJ (1996) Organometallics 15:5257–5259

    Article  CAS  Google Scholar 

  67. For an overview, see: Constable EC (1997) Chem Commun 1073–1080

    Google Scholar 

  68. Sauvage J-P, Collin J-P, Chambron JC, Guillerez S, Coudret C, Balzani V, Barigelletti F, De Cola L, Flamigni L (1994) Chem Rev 94:993–1019

    Article  CAS  Google Scholar 

  69. Newkome GR, Cardullo F, Constable EC, Moorefield CN, Cargill Thompson AMW (1993) J Chem Soc Chem Commun 925–927

    Google Scholar 

  70. Newkome GR, He E (1997) J Mater Chem 7:1237–1244

    Article  CAS  Google Scholar 

  71. Newkome GR, He E (1998) Macromolecules 31:4382–4386

    Article  CAS  Google Scholar 

  72. For another example of electronic communication between transition metals in dendrimers, see: Cuadrado I, Casado CM, Alonso B, Morán M, Losada J, Belsky V (1997) J Am Chem Soc 119:7613–7614

    Article  CAS  Google Scholar 

  73. Newkome GR, Patri AK, Godínez LA (1999) Chem Eur J 5:1445–1451

    Article  CAS  Google Scholar 

  74. Constable EC, Harverson P (1996) Chem Commun 33–34

    Google Scholar 

  75. Constable EC, Harverson P (1996) Inorg Chim Acta 252:281–291

    Article  CAS  Google Scholar 

  76. Constable EC, Harverson P, Ramsden JJ (1997) Chem Commun 1683–1684

    Google Scholar 

  77. Constable EC, Harverson P, Oberholzer M (1996) Chem Commun 1821–1822

    Google Scholar 

  78. Constable EC, Housecroft CE, Cattalini M, Phillips D (1998) New J Chem 193–200

    Google Scholar 

  79. (a) Constable EC, Leese TA (1988) Inorg Chim Acta 146:55–58; (b) Constable EC, Cargill Thompson AMW, Harverson P, Macko L, Zehnder M (1995) Chem Eur J 1:360–367

    Article  Google Scholar 

  80. Armspach D, Cattalini M, Constable EC, Housecroft CE, Philips D (1996) Chem Commun 1823–1824

    Google Scholar 

  81. (a) Hawthorne MF (1993) Angew Chem Int Ed Engl 32:950–984; (b) Soloway AH, Tjarks W, Barnum BA, Rong F-G, Barth RF, Codogni IM, Wilson J G (1998) Chem Rev 98:1515–1562

    Article  Google Scholar 

  82. Hagihara N, Sonogashira K, Takahashi S (1981) Adv Polym Sci 41:149–179

    CAS  Google Scholar 

  83. Ohshiro N, Takei F, Onitsuka K, Takahashi S (1996) Chem Lett 871–872

    Google Scholar 

  84. Leininger S, Stang PJ, Huang S (1998) Organometallics 17:3981–3987

    Article  CAS  Google Scholar 

  85. Onitsuka K, Fujimoto M, Ohshiro N, Takahashi S (1999) Angew Chem Int Ed 38:689–692

    Article  CAS  Google Scholar 

  86. McDonagh AM, Humphrey MG, Samoc M, Luther-Davies B (1999) Organometallics 18:5195–5197

    Article  CAS  Google Scholar 

  87. McDonagh AM, Humphrey MG, Samoc M, Luther-Davies B, Houbrechts S, Wada T, Sasabe H, Persoons A (1999) J Am Chem Soc 121:1405–1406

    Article  CAS  Google Scholar 

  88. Bhawalker JD, He GS, Prasad PN (1996) Rep Prog Phys 59:1041–1070

    Article  Google Scholar 

  89. Osawa M, Hoshino M, Horiuchi S, Wakatsuki Y (1999) Organometallics 18:112–114

    Article  CAS  Google Scholar 

  90. These tridentate ligands are usually abbreviated as NCN, PCP and SCS pincer ligands

    Google Scholar 

  91. (a) Steenwinkel P, Gossage RA, van Koten G (1998) Chem Eur J 4:759–762, and references cited therein; (b) Weisman A, Gozin M, Kraatz H-B, Milstein D (1996) Inorg Chem 35:1792–1797, and references cited therein

    Article  CAS  Google Scholar 

  92. Errington J, McDonald WS, Shaw BJ (1980) J Chem Soc Dalton Trans 2312–2314

    Google Scholar 

  93. (a) Kickham JE, Loeb SJ, Murphy SL (1997) Chem Eur J 3:1203–1213; (b) Cameron BR, Loeb SJ, Yap GPA (1997) Inorg Chem 36:5498–5504

    Article  CAS  Google Scholar 

  94. Bergbreiter DE, Osburn PL, Liu Y-S (1999) J Am Chem Soc 121:9531–9538

    Article  CAS  Google Scholar 

  95. Hall J, Loeb SJ, Shimizu GKH, Yap GPA (1998) Angew Chem Int Ed 37:121–123

    Article  CAS  Google Scholar 

  96. Huck WTS, van Veggel FCJM, Kropman BL, Blank DHA, Keim EG, Smithers MMA, Reinhoudt DN (1995) J Am Chem Soc 117:8293–8294

    Article  CAS  Google Scholar 

  97. (a) Huck WTS, Snellink-Ruël BHM, Lichtenbelt JWT, van Veggel FCJM, Reinhoudt DN (1997) Chem Commun 9–10; (b) Huck WTS, van Veggel FCJM, Reinhoudt DN (1997) J Mater Chem 7:1213–1219

    Google Scholar 

  98. Huck WTS, van Veggel FCJM, Reinhoudt DN (1996) Angew Chem Int Ed Engl 35: 1213–1215

    Article  CAS  Google Scholar 

  99. Huck WTS, van Veggel FCJM, Sheiko SS, Möller M, Reinhoudt DN (1998) J Phys Org Chem 12:540–545

    Article  Google Scholar 

  100. For a few representative examples, see: (a) Leize E, van Dorsselaer A, Krämer R, Lehn J-M (1993) J Chem Soc Chem Commun 990–993; (b) Hasenknopf B, Lehn J-M, Boumediene N, Dupont-Gervais A, van Dorsselaer A, Kneisel B, Fenske D (1997) J Am Chem Soc 119:10, 956–10, 962; (c) Fujita M, Fujita N, Ogura K, Yamaguchi K (1999) Nature 400:52–55; (d) Olenyuk B, Whiteford JA, Fechtenkötter A, Stang PJ (1999) Nature 398:796–799

    Google Scholar 

  101. Huck WTS, Prins LJ, Fokkens RH, Nibbering NMM, van Veggel FCJM, Reinhoudt DN (1998) J Am Chem Soc 120:6240–6246

    Article  CAS  Google Scholar 

  102. Veerman JA, Levi SA, van Veggel FCJM, Reinhoudt DN, van Hulst NF (1999) J Phys Chem A 103:11,264–11,270

    Article  CAS  Google Scholar 

  103. Dunn RC (1999) Chem Rev 99:2891–2927

    Article  CAS  Google Scholar 

  104. Ulman A (1991) An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly. Academic Press, San Diego

    Google Scholar 

  105. See, for example: (a) Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L II, Allara DL, Tour JM, Weiss PS (1996) Science 271:1705–1707; (b) Offord DA, Sachs SB, Ennis MS, Eberspacher TA, Griffin JH, Chidsey CED, Collman JP (1998) J Am Chem Soc 120:4478–4487; (c) Weck M, Jackiw JJ, Rossi RR, Weiss PS, Grubbs RH (1999) J Am Chem Soc 121:4088–4089

    Article  CAS  Google Scholar 

  106. Schlenoff JB, Li M, Ly H (1995) J Am Chem Soc 117:12,528–12,536

    Article  CAS  Google Scholar 

  107. (a) Hierlemann A, Campbell JK, Baker LA, Crooks RM, Ricco AJ (1998) J Am Chem Soc 120:5323–5324, and references cited therein; (b) Li J, Piehler LT, Qin D, Baker JR, Tomalia DA, Meier DJ (2000) Langmuir 16:5613–5616

    Article  CAS  Google Scholar 

  108. (a) Huisman B-H, Schönherr H, Huck WTS, Friggeri A, van Manen H-J, Menozzi E, Vancso GJ, van Veggel FCJM, Reinhoudt DN (1999) Angew Chem Int Ed 38:2248–2251; (b) Friggeri A, Schönherr H, van Manen H-J, Huisman B-H, Vancso GJ, Huskens J, van Veggel FCJM, Reinhoudt DN (2000) Langmuir 16:7757–7763

    Article  CAS  Google Scholar 

  109. More information about hydrogen-bonded rosettes can be found in: (a) Whitesides GM, Simanek EE, Mathias JP, Seto CT, Chin DN, Mammen M, Gordon DM (1995) Acc Chem Res 28:37–44; (b) Simanek EE, Li X, Choi I, Whitesides GM () 1996 Cyanuric acid and melamine: a platform for the construction of soluble aggregates and crystalline materials. In: Lehn J-M, Atwood JL, Davis JED, MacNicol DD, Vögtle F (eds) Comprehensive supramolecular chemistry. Pergamon, Oxford, UK, 1987–1996, vol 9, chap 17; (c) Timmerman P, Vreekamp RH, Hulst R, Verboom W, Reinhoudt DN, Rissanen K, Udachin KA, Ripmeester J (1997) Chem Eur J 3:1823–1832

    Article  CAS  Google Scholar 

  110. Zimmerman SC, Zeng F, Reichert DEC, Kolotuchin SV (1996) Science 271:1095–1099

    Article  CAS  Google Scholar 

  111. Huck WTS, Hulst R, Timmerman P, van Veggel FCJM, Reinhoudt DN (1997) Angew Chem Int Ed Engl 36:1006–1008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Manen, HJ., van Veggel, F.C.J.M., Reinhoudt, D.N. (2001). Non-Covalent Synthesis of Metallodendrimers. In: Vögtle, F., Schalley, C.A. (eds) Dendrimers IV. Topics in Current Chemistry, vol 217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45003-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45003-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42095-8

  • Online ISBN: 978-3-540-45003-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics