Skip to main content

Optical Frequency Measurement by Conventional Frequency Multiplication

  • Chapter
  • First Online:
Frequency Measurement and Control

Part of the book series: Topics in Applied Physics ((TAP,volume 79))

Abstract

Measurements of several stable optical frequencies using the PTB frequency chain are reported. The measurement scheme together with the ingredients (radiation sources, nonlinear elements, coherence) for such measurements are discussed. A comparison of different frequency chains is reported and the measurements planned for the near future are mentioned.

It is generally hoped that a high (e.g. optical) frequency atomic quantum transition can improve the accuracy of future frequency standards over those presently available, which are based upon microwave transitions. This is suggested by the fact that the homogeneous linewidth of an atomic transition the quantity with the largest influence on the accuracy of a standard, is largely independent of the transition frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Andrae, W. König, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermmann, D. Meschede, T. W. Hänsch: Absolute frequency measurement of the hydrogen 1S-2S transition and a new value of the Rydberg constant. Phys. Rev. Lett. 69, 1923–1926 (1992)

    Article  ADS  Google Scholar 

  2. W. M. Kelly, G. T. Wrixon: Conversion losses in Schottky-barrier diode mixers in the submillimeter region. IEEE Trans Microwave Theory Tech. 27, 665–667 (1979)

    Article  ADS  Google Scholar 

  3. Y. Miki, A. Onae, T. Kurosawa, Y. Akimoto, E. Sakuma: Frequency chain to 3.39 µm CH4-stabilized He-Ne laser using Josephson point contact as harmonic mixer. Jpn. J. Appl. Phys. 33, 1655–1658 (1994)

    Article  ADS  Google Scholar 

  4. K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, G. W. Day: Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser. Phys. Rev. Lett. 29, 1346–1349 (1972)

    Article  ADS  Google Scholar 

  5. V. F. Zakhar’yash, V. M. Klement’ev, M. V. Nihitin, B. A. Timchenko, V. P. Chebotaev: Absolute measurement of the frequency of the E-line of methane. Sov. Phys. Tech. Phys. 28, 1374–1375 (1983)

    Google Scholar 

  6. see e.g. T. G. Blaney, C. C. Bradley, G. J. Edwards, D. J. E. Knight: Absolute frequency measurement of a Lamb-dip stabilized water vapour laser oscillating at 10.7 THz (28 mm) Phys. Lett. A 43, 471–472 (1973)

    Article  ADS  Google Scholar 

  7. T. Y. Chang, T. J. Bridges: Laser action at 452, 496, and 541 µm in optically pumped CH3. Opt. Commun. 1, 432–436 (1970)

    Article  ADS  Google Scholar 

  8. K. Button, M. Inguscio, F. Strumia (Eds.): Reviews of Infrared and Millimeter Waves, Vol. 2 (Plenum, New York 1984)

    Google Scholar 

  9. C. O. Weiss, G. D. Willenberg: Studies on continuous Raman hyper-Raman lasers in the far infrared. Ind. J. Pure Appl. Phys. 26, 102–107 (1988)

    Google Scholar 

  10. G. D. Willenberg, C.O. Weiss, H. Jones: Two-photon pumped cw laser. Appl. Phys. Lett. 37, 133–135 (1980)

    Article  ADS  Google Scholar 

  11. C.O. Weiss, G. D. Willenberg, J. W. Won, H. R. Telle: Far infrared laser emission by microwave-infrared-far-infrared three-photon interaction in NH3. IEEE J. Quantum Electron. 21, 6–9 (1985)

    Article  ADS  Google Scholar 

  12. J. Heppner, C.O. Weiss: Far-infrared ring laser. Appl. Phys. Lett. 33, 590–592 (1978)

    Article  ADS  Google Scholar 

  13. C. O. Weiss, P. S. Ering, M. Cooper: Instabilities and chaos of a single mode NH3 ring laser. Opt. Commun. 52, 405–408 (1984)

    Article  ADS  Google Scholar 

  14. C.O. Weiss: Optically pumped FIR laser with variable Fabry-Perot output coupler. Appl. Phys. 13, 383–385 (1977)

    Article  ADS  Google Scholar 

  15. L. Czerny: Messungen an Steinsalz im Ultraroten zur Prüfung der Dispersionstheorie. Z. Phys. 65, 600–631 (1930)

    Article  ADS  Google Scholar 

  16. L. O. Hocker, A. Javan, A. Ramachandra Rao: Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared. Appl. Phys. Lett. 10, 147–149 (1967)

    Article  ADS  Google Scholar 

  17. D. A. Jennings, F. R. Peterson, K. M. Evenson: Laser Spectroscopy IV, H. Walter, K. Rothe (Eds.) (Springer, Berlin, Heidelberg 1979)p. 39

    Google Scholar 

  18. H. H. Klingenberg, C. O. Weiss: Rectification and harmonic generation with metal-insulator-metal diodes. Appl. Phys. Lett. 43, 361–363 (1983)

    Article  ADS  Google Scholar 

  19. G. Kramer: Characteristics of W-Ni and W-Co point contacts, precise frequencies of some FIR laser lines, Proceedings of the 2nd Frequency Standards and Metrology Symposium, pp. 469–478 (1976)

    Google Scholar 

  20. L. M. Matarrese, K. M. Evenson: Improved coupling to infrared whisker diodes by use of antenna theory. Appl. Phys. Lett. 17, 8–10 (1979)

    Article  ADS  Google Scholar 

  21. K. M. Evenson, M. Inguscio, D. A. Jennings: Point contact diode at laser frequencies. J. Appl. Phys. 57, 956–960 (1985)

    Article  ADS  Google Scholar 

  22. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C.O. Weiss: Nanometer thin film Ni-Ni0-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz. Appl. Phys. B 66, 327–332 (1998)

    Article  ADS  Google Scholar 

  23. K. K. Likharev: em Dynamics of Josephson Junctions and-contacts (Gordon, Breach, Amsterdam 1986)

    Google Scholar 

  24. S. R. Stein, J. P. Turneaure: Superconducting-cavity stabilized oscillators with improved frequency stability. Proc. IEEE 63, 1249–1250 (1975)

    Article  ADS  Google Scholar 

  25. T. W. Tsang, S. E. Schwarz: Transport theory of high-frequency rectification in Schottky-barriers. J. Appl. Phys. 50, 3459–3471 (1979)

    Article  ADS  Google Scholar 

  26. C. O. Weiss, A. Godone: Extension of frequency measurements with Schottky diodes to the 4 THz range. Appl. Phys. B 27, 167–168 (1982)

    Article  ADS  Google Scholar 

  27. C. O. Weiss, A. Godone: Harmonic mixing and detection with Schottky diodes up to the 5 THz range. IEEE J. Quantum Electron. 20, 97–99 (1984)

    Article  ADS  Google Scholar 

  28. J. W. Won, C. O. Weiss: FIR frequency measurement with a waveguide-optical harmonic mixer. IEEE Trans. Instrum. Meas. 38, 541–542 (1989)

    Article  Google Scholar 

  29. C. O. Weiss, T. Sakurai: Order harmonic mixing to 3.7 THz using a Schottky diode. Opt. Commun. 62, 351–352 (1987)

    Article  ADS  Google Scholar 

  30. Y. C. Ni, C. O. Weiss: Simple frequency measurement chain to 30 THz. Appl. Phys. B 50, 381–383 (1990)

    Article  ADS  Google Scholar 

  31. Experiments carried out by C. O. Weiss and P. S. Ering, unpublished

    Google Scholar 

  32. H. Krautle, E. Sauter, G. V. Schultz: Antenna characteristics of whisker diodes used as submillimeter receivers. Infrared Phys. 17, 477–483 (1977)

    Article  ADS  Google Scholar 

  33. D. Y. Tang, M. Y. Li, C. O. Weiss: Field dynamics of a single-mode-laser. Phys. Rev. A 44, 7597–7604 (1991)

    Article  ADS  Google Scholar 

  34. H. R. Fettermann, P. E. Tannenwald, B. J. Clifton, D. Parker, W. D. Fitzgerald, L. R. Ericson: Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers. Appl. Phys. Lett. 33, 151–154 (1978)

    Article  ADS  Google Scholar 

  35. C. O. Weiss, R. Vilaseca: Dynamics of Lasers (VCH, Weinheim 1991)

    Google Scholar 

  36. R. L. Barger, J. L. Hall: Pressure shift and broadening of methane line at 3.39 m studied by laser-saturated molecular absorption. Phys. Rev. Lett. 22, 4–8 (1969)

    Article  ADS  Google Scholar 

  37. G. Kramer: Linear optical “Ramsey” resonance by means of a spacially modulated beam. J. Opt. Soc. Am. 68, 1634–1635 (1978)

    ADS  Google Scholar 

  38. M. A. Gubin, D. A. Tyurikov, A. Shelkolnikov, E. V. Kovalchuk, G. Kramer, B. Lipphardt: Transportable He-Ne CH4 optical frequency standard and absolute measurements of its frequency. IEEE J. Quantum Electron. 31, 2177–2188 (1995)

    Article  ADS  Google Scholar 

  39. P. S. Ering, D. A. Tyurikov, G. Kramer, B. Lipphardt: Measurement of the absolute frequency of the methane E-line at 88 THz. Opt. Commun. 151, 229–234 (1998)

    Article  ADS  Google Scholar 

  40. H. R. Telle: Frequency Control of Semiconductor Lasers, M. Ohtsu (Ed.) (Wiley, New York 1996)p. 137

    Google Scholar 

  41. C. O. Weiss, G. Kramer, B. Lipphardt, E. Garcia: Frequency measurement of a CH4 hyperfine line at 88 THz/“optical clock”. IEEE J. Quantum Electron. 24, 1970–1972 (1988)

    Article  ADS  Google Scholar 

  42. A. S. Shelkovnikov, E. Kovalchuk, M. A. Gubin, R. Felder, O. Acev, G. D. Rovera, B. G. Kramer, B. Lipphardt, S. Lea: Absolute frequency measurement, with a set of transportable Methan, optical frequency standards. Proc. of EFIF-IEEE IFCS, pp. 742–745 (1999)

    Google Scholar 

  43. F. Riehle, H. Schnatz, B. Lipphardt, G. Zimmer, T. Trebst, J. Helmcke: Frequency measurements of visible light. In Trapped Charged Particles and Fundamental Physics, D. H. Dubin, D. Schneider (Eds.), AIP Conf. Proc. 457 (American Inst. Physics, Woodbury, NY 1999)

    Google Scholar 

  44. H. Li, H. R. Telle: Efficient frequency noise reduction of GaAlAs semiconductor lasers by optical feedback from an external high-finesse resonator. IEEE J. Quantum Electron. 25, 257–264 (1989)

    Article  ADS  Google Scholar 

  45. D. J. E. Knight, K. I. Pharao, M. Zucco: Frequency mixing to the 4th order in metal-insulator-metal diodes at 193 Thz, 1,55µ Proc. 5th Symp. on Frequency Standards and Metrology. Woods Hole, pp. 465–467 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to K. Dorenwendt on the occasion of this retirement

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weiss, C.O., Kramer, G., Lipphardt, B., Schnatz, H. (2001). Optical Frequency Measurement by Conventional Frequency Multiplication. In: Luiten, A.N. (eds) Frequency Measurement and Control. Topics in Applied Physics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44991-4_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-44991-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67694-2

  • Online ISBN: 978-3-540-44991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics