Skip to main content

Recent Developments in Microwave Ion Clocks

  • Chapter
  • First Online:
Frequency Measurement and Control

Part of the book series: Topics in Applied Physics ((TAP,volume 79))

Abstract

We review the development of microwave-frequency standards based on trapped ions. Following two distinct paths, microwave ion clocks have evolved greatly in the last twenty years since the earliest Paul-trap-based units. Laser-cooled ion frequency standards reduce the second-order Doppler shift from ion micromotion and thermal secular motion achieving good signal-to-noise ratios via cycling transitions where as many as ≈ 108 photons per second per ion may be scattered. Today, laser-cooled ion standards are based on linear Paul traps which hold ions near the node line of the trapping electric field, minimizing micromotion at the trapping-field frequency and the consequent second-order Doppler frequency shift. These quadrupole (radial) field traps tightly confine tens of ions to a crystalline single-line structure. As more ions are trapped, space charge forces some ions away from the node-line axis and the second-order Doppler effect grows larger, even at negligibly small secular temperatures. Buffer-gas-cooled clocks rely on large numbers of ions, typically ≈ 107, optically pumped by a discharge lamp at a scattering rate of a few photons per second per ion. To reduce the second-order Doppler shift from space charge repulsion of ions from the trap node line, novel multipole ion traps are now being developed where ions are weakly bound with confining fields that are effectively zero through the trap interior and grow rapidly near the trap electrode “walls”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. J. Dick, R. T. Wang, R. L. Tjoelker: Cryo-cooled sapphire oscillator with ultra-high stability. IEEE Int. Freq. Control Symp. Proc. 52, 528–533 (1998)

    Google Scholar 

  2. D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland: Laser-cooled mercury ion frequency standard. Phys. Rev. Lett. 80, 2089–2092 (1998)

    Article  ADS  Google Scholar 

  3. R. F. Wuerker, H. Sheldon, R. V. Langmuir: Electrodynamic containment of charged particles. J. Appl. Phys. 30, 342–349 (1959)

    Article  ADS  Google Scholar 

  4. H. G. Dehmelt: Radio-frequency spectroscopy of stored ions I: storage. Adv. Atom. Molec. Phys. 3, 53–72 (1969)

    Article  Google Scholar 

  5. P. T.H. Fisk: Trapped-ion and trapped-atom microwave frequency standards. Rep. Prog. Phys. 60(8), 761–818 (1997)

    Article  ADS  Google Scholar 

  6. D. J. Berkeland, J. D. Miller, F. C. Cruz, B.C. Young, R. J. Rafac, X. P. Huang, W. M. Itano, J. C. Bergquist, D. J. Wineland: High-resolution, high-accuracy spectroscopy of trapped ions. Atomic Phys. 16, 29–41 (1999)

    ADS  Google Scholar 

  7. J. D. Prestage, R. L. Tjoelker, G. J. Dick, L. Maleki: Ultra-stable Hg+ trapped ion frequency standard. J. Mod. Opt. 39, 221–232 (1992)

    Article  ADS  Google Scholar 

  8. J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, D. J. Wineland: A 303 MHz frequency standard based on trapped Be+ ions. IEEE Trans. Instrum. Meas. 40, 126 (1991)

    Article  Google Scholar 

  9. U. Tanaka, H. Imajo, K. Hayasaks, R. Omukai, M. Watanabe, S. Urabe: Determination of the ground-state hyperfine splitting of trapped 113Cd+ ions. Phys. Rev. A 53, 3982–3985 (1996)

    Article  ADS  Google Scholar 

  10. G. J. Dick, C. A. Greenhall: L. O. limited frequency stability for passive atomic frequency standards using square wave frequency modulation. IEEE Int. Freq. Control Symp. Proc. 52, 99–103 (1998)

    Google Scholar 

  11. P. Lemonde, G. Santarelli, P. Laurent, F. P.D. Santos, A. Clairon, C. Salomon: The sensitivity function: a new tool for the evaluation of frequency shifts in atomic spectroscopy. IEEE Int. Freq. Control Symp. Proc. 52, 110–115 (1998)

    Google Scholar 

  12. J. Hoffnagle, R. G. Devoe, L. Reyna, R. G. Brewer: Order-chaos transition of two trapped ions. Phys. Rev. Lett. 61, 255–258 (1988)

    Article  ADS  Google Scholar 

  13. R. G. Brewer, J. Hoffnagle, R. G. Devoe, L. Reyna, W. Henshaw: Collision-induced two-ion chaos. Nature 344, 305–309 (1990)

    Article  ADS  Google Scholar 

  14. R. Blumel, J. M. Chen, E. Peik, W. Quint, W. Schleich, Y. R. Shen, H. Walther: Phase transitions of stored laser-cooled ions. Nature 334(6180), 309–313 (1988)

    Article  ADS  Google Scholar 

  15. R. Blumel, C. Kappler, W. Quint, H. Walther: Chaos and order of laser-cooled ions in a Paul trap. Phys. Rev. A 40, 808–823 (1989)

    Article  ADS  Google Scholar 

  16. J. D. Prestage, G. J. Dick, L. Maleki: New ion trap for frequency standard applications. J. Appl. Phys. 66, 1013–1017 (1989)

    Article  ADS  Google Scholar 

  17. R. B. Warrington, P. T.H. Fisk, M. J. Wouters, M. A. Lawn, C. Coles: The CSIRO trapped 171Yb+ ion clock: Improved accuracy through laser-cooled operation. Joint EFTF/IEEE Int. Freq. Control Symp. Proc. 53 (1999) in press

    Google Scholar 

  18. J. D. Prestage, R. L. Tjoelker, G. J. Dick, L. Maleki: Improved linear ion trap physics package. IEEE Int. Freq. Control Symp. Proc. 47, 144–147 (1993)

    Article  Google Scholar 

  19. D. Gerlich: Inhomogeneous RF fields: a versatile tool for the study of processes with slow ions. Adv. Chem. Phys. LXXXII, 1–176 (1992)

    Article  Google Scholar 

  20. L. S. Cutler, C. A. Flory, R. P. Giffard, M. D. McGuire: Doppler effects due to thermal macromotion of ions in an rf quadrupole trap. Appl. Phys. B 39, 251–259 (1986)

    Article  ADS  Google Scholar 

  21. L. S. Cutler, R. P. Giffard, M. D. McGuire: A trapped mercury-199 ion frequency standard. In: Proc. 13th Annu. PTTI Application and Planning Meeting, NASA Conf. Pub. 2220, 563–578 (1981)

    Google Scholar 

  22. J. D. Prestage, R. L. Tjoelker, L. Maleki: Higher pole linear traps for atomic clock applications. Joint EFTF/IEEE Int. Freq. Control Symp. Proc. 53 (1999) in press

    Google Scholar 

  23. G. R. Janik, J. D. Prestage, L. Maleki: Simple analytic potentials for linear ion traps. J. Appl. Phys. 67, 6050–6055 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prestage, J.D., Tjoelker, R.L., Maleki, L. (2001). Recent Developments in Microwave Ion Clocks. In: Luiten, A.N. (eds) Frequency Measurement and Control. Topics in Applied Physics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44991-4_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-44991-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67694-2

  • Online ISBN: 978-3-540-44991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics