Skip to main content

Cold-Atom Clocks on Earth and in Space

  • Chapter
  • First Online:
Frequency Measurement and Control

Abstract

We present recent progress on microwave clocks that make use of lasercooled atoms. With an ultra-stable cryogenic sapphire oscillator as interrogation oscillator, a cesium fountain operates at the quantum projection noise limit. With 6 × 105 detected atoms, the relative frequency stability is 4 × 10−14 τ −1/2, where τ is the integration time in seconds. This stability is comparable to that of hydrogen masers. At τ = 2 × 104 s, the measured stability reaches 6 × 10−16. A 87Rb fountain has also been constructed and the 87Rb ground-state hyperfine energy has been compared to the Cs primary standard with a relative accuracy of 2.5 × 10−15. The 87Rb collisional shift is found to be at least 30 times below that of cesium. We also describe a transportable cesium fountain, which will be used for frequency comparisons with an accuracy of 10−15 or below. Finally, we present the details of a space mission for a cesium standard which has been selected by the European Space Agency (ESA) to fly on the International Space Station in 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Zacharias: unpublished (1953) as described in [3]

    Google Scholar 

  2. N. Ramsey: Molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–698 (1950)

    Article  ADS  Google Scholar 

  3. N. Ramsey: Molecular Beams (Oxford Univ. Press, Oxford 1985)

    Google Scholar 

  4. S. Chu: The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998)

    Article  ADS  Google Scholar 

  5. C. Cohen-Tannoudji: Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–720 (1998)

    Article  ADS  Google Scholar 

  6. W. Phillips: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–742 (1998)

    Article  ADS  Google Scholar 

  7. A. De Marchi: The optically pumped caesium fountain: 10−15 accuracy? Metrologia 18, 103–116 (1982)

    Article  ADS  Google Scholar 

  8. G. Beausoleil, T. W. Hänsch: Ultrahigh-resolution two-photon optical Ramsey spectroscopy of an atomic fountain. Phys. Rev. A 33, 1661–1670 (1986)

    Article  ADS  Google Scholar 

  9. J. Hall, M. Zhu, P. Buch: Prospects for using laser-prepared atomic fountains for optical frequency standards applications. J. Opt. Soc. Am. B 6, 2194–2205 (1989)

    Article  ADS  Google Scholar 

  10. M. Kasevich, E. Riis, S. Chu, R. de Voe: RF spectroscopy in an atomic fountain. Phys. Rev. Lett. 63, 612–615 (1989)

    Article  ADS  Google Scholar 

  11. C. Monroe, H. Robinson, C. Wieman: Observation of the cesium clock transition using laser-cooled atoms in a vapor cell. Opt. Lett. 16, 50–52 (1991)

    Article  ADS  Google Scholar 

  12. A. Clairon, C. Salomon, S. Guellati, W. Phillips: Ramsey resonance in a Zacharias fountain. Europhys. Lett. 16, 165–170 (1991)

    Article  ADS  Google Scholar 

  13. P. Lett, R. Watts, C. Westbrook, W. Phillips, P. Gould, H. Metcalf: Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169–172 (1988)

    Article  ADS  Google Scholar 

  14. J. Dalibard, C. Cohen-Tannoudji: Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023–2045 (1989)

    Article  ADS  Google Scholar 

  15. P. Ungar, D. Weiss, E. Riis, S. Chu: Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B 6, 2058–2071 (1989)

    Article  ADS  Google Scholar 

  16. C. Salomon, J. Dalibard, W. Phillips, A. Clairon, S. Guellati: Laser cooling of cesium atoms below 3µEurophys. Lett. 12, 683–688 (1990)

    Article  ADS  Google Scholar 

  17. A. Bauch, T. Heindorff: The primary cesium atomic clocks of the PTB. In: Proc. Fourth Symposium on Frequency Standards and Metrology, A. DeMarchi (Ed.) (Springer, Berlin, Heidelberg 1989)pp. 370–373

    Google Scholar 

  18. K. Gibble, S. Chu: Future slow-atom frequency standards. Metrologia 29, 201–212 (1992)

    Article  ADS  Google Scholar 

  19. See for instance Proc. Joint Meeting 13 th EFTF and 53 rd IEEE Freq. Contr. Symposium, Besançon, France (1999)

    Google Scholar 

  20. See for instance, P. Berman (Ed.): Atom Interferometry (Academic, San Diego 1997)

    Google Scholar 

  21. E. Simon, P. Laurent, A. Clairon: Measurement of the Stark shift of the Cs hyperfine splitting in an atomic fountain. Phys. Rev. A 57, 436–439 (1998)

    Article  ADS  Google Scholar 

  22. K. Szymaniec, H. J. Davies, C. S. Adams: An atomic fountain guided by a far-off resonance laser beam. Europhys. Lett. 45, 450–455 (1999)

    Article  ADS  Google Scholar 

  23. K. Gibble, S. Chu: A laser cooled Cs frequency standard and a measurement of the frequency shift due to ultra-cold collisions. Phys. Rev. Lett. 70, 1771–1774 (1993)

    Article  ADS  Google Scholar 

  24. K. Gibble: Collisional effects in cold alkalis. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 66–73

    Google Scholar 

  25. G. Dudle, N. Sagna, P. Thomann, E. Aucouturier, P. Petit, N. Dimarcq: Generation of a continuous beam of cold cesium atoms.In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 121–126

    Google Scholar 

  26. S. Oshima, T. Kurosu, T. Ikegami, Y. Nakadan: Multipulse operation of a cesium fountain. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 60–65

    Google Scholar 

  27. R. Legere, K. Gibble: Quantum scattering in a juggling atomic fountain. Phys. Rev. Lett. 81, 5780–5783 (1998)

    Article  ADS  Google Scholar 

  28. A. Clairon, P. Laurent, G. Santarelli, S. Ghezali, S. Lea, M. Bahoura: A cesium fountain frequency standard: preliminary results. IEEE Trans. Instrum. Meas. 44, 128–131 (1995)

    Article  Google Scholar 

  29. A. Clairon, S. Ghezali, G. Santarelli, P. Laurent, S. Lea, M. Bahoura, E. Simon, S. Weyers, K. Szymaniec: Preliminary accuracy evaluation of a cesium fountain frequency standard. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 49–59 (1996)

    Google Scholar 

  30. G. Dick: Local oscillator induced instabilities in trapped ion frequency standards. In: Proc. of Precise Time and Time Interval, Redendo Beach (1987)pp. 133–147

    Google Scholar 

  31. G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. J. Dick, A. Clairon: Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Trans. Ultrason. Ferroelec. Freq. Control 45, 887–894 (1998)

    Article  Google Scholar 

  32. G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. Mann, S. Chang, A. N. Luiten, C. Salomon: Quantum projection noise in an atomic fountain: a high stability cesium frequency standard. Phys. Rev. Lett. 82, 4619–4622 (1999)

    Article  ADS  Google Scholar 

  33. W. Itano, L. Lewis, D. J. Wineland: Shift of 2S1/2 hyperfine splittings due to blackbody radiation. Phys. Rev. A 25, 1233–1235 (1982)

    Article  ADS  Google Scholar 

  34. A. Bauch, R. Schröder: Experimental verification of the shift of the cesium hyperfine transition frequency due to blackbody radiation. Phys. Rev. Lett. 78, 622–625 (1997)

    Article  ADS  Google Scholar 

  35. A. Clairon, P. Laurent, A. Nadir, M. Drewsen, D. Grison, B. Lounis, C. Salomon: A simple and compact source of cold-atoms for cesium fountains and microgravity clocks. In: Proc. 6 th European Frequency and Time Forum, Vol. ESA SP-340 (ESA, Noordwijk 1992)pp. 27–33

    ADS  Google Scholar 

  36. B. Lounis, J. Reichel, C. Salomon: Laser cooling of atoms in micro-gravity. Compte Rendue Acad. Sci. Paris 316(Série II), 739–744 (1993)

    Google Scholar 

  37. C. Salomon, C. Veillet: ACES: Atomic clock ensemble in space. In: ESA Space Station Utilisation Symposium, Vol. SP-385 (ESA, Darmstadt 1996) pp. 295–297

    Google Scholar 

  38. P. Laurent, P. Lemonde, E. Simon, G. Santarelli, A. Clairon, N. Dimarcq, P. Petit, C. Audoin, C. Salomon: A cold-atom clock in absence of gravity. Eur. Phys. J. D 3, 201–204 (1998)

    ADS  Google Scholar 

  39. K. Gibble: Laser-cooled microgravity clocks. IEEE Int. Freq. Control Symp. Proc. 52, 41–45 (1998)

    Google Scholar 

  40. H. Robinson, S. Jefferts, D. Sullivan, L. Hollberg, N. Ashby, T. Heavner, J. Shirley, F. Walls, R. Drullinger: Design studies for a laser-cooled space clock. IEEE Int. Freq. Control Symp. Proc. 52, 37–40 (1998)

    Google Scholar 

  41. A. Makdissi, J. Berthet, E. de Clercq: Phase shift and light shift determination in an optically pumped cesium beam frequency standard. IEEE Trans. Ultrason. Ferroelec. Freq. Control (1999) submitted

    Google Scholar 

  42. S. Bize, Y. Sortais, M. Santos, Mandache, A. Clairon, C. Salomon: High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain. Europhys. Lett. 45, 558–564 (1999)

    Article  ADS  Google Scholar 

  43. A. Kastberg, W. Phillips, S. Rolston, R. Spreeuw, P. Jessen: Adiabatic cooling of cesium to 700 nk in an optical lattice. Phys. Rev. Lett. 74, 1542–1545 (1995)

    Article  ADS  Google Scholar 

  44. A. N. Luiten, A. Mann, M. Costa, D. Blair: Power stabilized cryogenic sapphire oscillator. IEEE Trans. Instrum. Meas. 44, 132–135 (1995)

    Article  Google Scholar 

  45. D. J. Wineland, W. Itano, J. Bergquist, F. Walls: Proposed stored 201Hg+ ion frequency standards. 35th Annu. Freq. Control Symp. Proc., 502–511 (1981)

    Google Scholar 

  46. W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. More, M. Raizen, D. J. Wineland: Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993)

    Article  ADS  Google Scholar 

  47. R. Tjoelker, J. Prestage, L. Maleki: Record frequency stability with mercury in a linear ion trap. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 33–38

    Google Scholar 

  48. P. Fisk, M. Sellars, M. Lawn, C. Coles: A microwave frequency standard based on trapped, buffer gas-cooled 171Yb+ ions. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 27–32

    Google Scholar 

  49. S. Ghezali, P. Laurent, S. Lea, A. Clairon: An experimental study of the spin-exchange frequency shift in a laser cooled cesium fountain frequency standard. Europhys. Lett. 36, 25–30 (1996)

    Article  ADS  Google Scholar 

  50. D. Berkeland, J. Miller, J. Bergquist, W. Itano, D. Wineland: Laser-cooled mercury ion frequency standard. Phys. Rev. Lett. 80, 2089–2092 (1998)

    Article  ADS  Google Scholar 

  51. S. Kokkelmans, B. Verhaar, K. Gibble, D. Heinzen: Predictions for laser-cooled Rb clocks. Phys. Rev. A 56, R4389–R4392 (1997)

    Article  ADS  Google Scholar 

  52. J. Prestage, R. Tjoelker, L. Maleki: Atomic clocks and variations of the fine structure constant. Phys. Rev. Lett. 74, 3511–3514 (1995)

    Article  ADS  Google Scholar 

  53. E. Arimondo, M. Inguscio, P. Violino: Experimental determinations of the hyperfine structure in the alkali atoms. Rev. Mod. Phys. 49, 31–76 (1977)

    Article  ADS  Google Scholar 

  54. R. F. C. Vessot, M. W. Levin, F. E. M. Mattison, E. L. Blomberg, T. E. Hoffman, G. U. Nystrom, B. F. Farrell, R. Decher, P. B. Eby, R. Baugher, J. W. Watts, D. L. Teuber, F. D. Wills: Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45, 2081–2084 (1980)

    Article  ADS  Google Scholar 

  55. D. Wineland, J. Bollinger, W. Itano, F. More: Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992)

    Article  ADS  Google Scholar 

  56. A. Kuzmich, K. Molmer, E. Polzik: Spin squeezing in an ensemble of atoms illuminated with squeezed light. Phys. Rev. Lett. 79, 4782–4785 (1997)

    Article  ADS  Google Scholar 

  57. J. Sorensen, J. Hald, E. Polzik: Quantum noise of an atomic spin polarization measurement. Phys. Rev. Lett. 80, 3487–3490 (1998)

    Article  ADS  Google Scholar 

  58. T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, T. W. Hänsch: Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain. Phys. Rev. Lett. 79, 2646–2649 (1997)

    Article  ADS  Google Scholar 

  59. F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, J. Helmcke: The optical calcium frequency standard. IEEE Trans. Instrum. Meas. 48, 613–617 (1999)

    Article  Google Scholar 

  60. F. Ruschewitz, J. Peng, H. Hinderthür, N. Schaffrath, K. Sengstock, W. Ertmer: Sub-kilohertz optical spectroscopy with a time domain atom interferometer. Phys. Rev. Lett. 80, 3173–3176 (1998)

    Article  ADS  Google Scholar 

  61. K. Vogel, T. Dinneen, A. Gallagher, J. Hall: Narrow-line doppler cooling of strontium to the recoil limit. IEEE Trans. Instrum. Meas. 48, 618–621 (1999)

    Article  Google Scholar 

  62. H. Katori, T. Ido, Y. Isoya, M. Kuwata-Gonokami: Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82, 1116–1119 (1999)

    Article  ADS  Google Scholar 

  63. B. Young, F. Cruz, W. Itano, J. C. Bergquist: Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999)

    Article  ADS  Google Scholar 

  64. G. Petit, Thomas, Z. Jiang, P. Uhrich, F. Taris: Use of GPS ASHTECH Z12T recievers for accurate time and frequency comparisons. IEEE Trans. Ultrason. Ferroelec. Freq. Control 46, 941–949 (1999)

    Article  Google Scholar 

  65. K. Larson, J. Levine: Time transfer using the phase of the GPS carrier. IEEE Int. Freq. Control Symp. Proc.52, 292–297 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lemonde, P. et al. (2001). Cold-Atom Clocks on Earth and in Space. In: Luiten, A.N. (eds) Frequency Measurement and Control. Topics in Applied Physics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44991-4_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44991-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67694-2

  • Online ISBN: 978-3-540-44991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics