Skip to main content

Ultrastable Cryogenic Microwave Oscillators

  • Chapter
  • First Online:
Frequency Measurement and Control

Part of the book series: Topics in Applied Physics ((TAP,volume 79))

Abstract

Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10−14 to a few times 10−16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 × 10−14/√τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10−14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator’s linewidth is typically limited by electronics noise to about 1 ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the “whispering gallery” (WG) mode sapphire resonator-oscillators of NASA’s Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University’s superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency stabilities in the range of a few times 10−15 to a few times 10−16. In this contribution we review only liquid-helium-cooled secondary frequency standards, such as those just mentioned, which have attained frequency stabilities of 10-14 or better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Stein, J. P. Turneaure: Superconducting-cavity stabilized oscillators with improved frequency stability. Proc. IEEE 63, 1249–1250 (1975)

    Article  ADS  Google Scholar 

  2. S. R. Stein, J. P. Turneaure: Development of the Superconducting Cavity Oscillator. (Freeman, New York 1988)pp. 414–430

    Google Scholar 

  3. J. A. Barnes: Characterization of frequency stability. IEEE Trans. Instrum. Meas. 20, 105–120 (1971)

    Article  Google Scholar 

  4. V. B. Braginsky, V. I. Panov: Superconducting resonators on sapphire. IEEE Trans. Magn. 15, 30–32 (1979)

    Article  ADS  Google Scholar 

  5. V. B. Braginsky, V. P. Mitrofanov, V. I. Panov: Systems With Small Dissipation. (Univ. Chicago Press, Chicago 1985)

    Google Scholar 

  6. V. B. Braginsky, V. S. Ilchenko, K. S. Bagdassarov: Experimental observation of fundamental microwave absorption in high quality dielectric crystals. Phys. Lett. A 120, 300–305 (1987)

    Article  ADS  Google Scholar 

  7. V. L. Gurevich, A. K. Tagantsev: Intrinsic dielectric loss in crystals: low temperatures. Sov. Phys. JETP 64, 142–151 (1986)

    Google Scholar 

  8. D. M. Strayer, G. J. Dick, J. E. Mercereau: Performance of a superconducting cavity stabilized ruby maser oscillator. IEEE Trans. Magn. 23, 1624–1628 (1987)

    Article  ADS  Google Scholar 

  9. G. J. Dick, R. T. Wang: Ultra-stable performance of the superconducting cavity maser. IEEE Trans. Instrum. Meas. 40, 174–177 (1991)

    Article  ADS  Google Scholar 

  10. A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair, M. J. Buckingham: A very high stability sapphire loaded superconducting cavity oscillator. Physica B 165, 145–146 (1990)

    Article  ADS  Google Scholar 

  11. A. J. Giles, S. K. Jones, D. G. Blair, M. J. Buckingham: A high stability microwave oscillator based on a sapphire loaded superconducting cavity. IEEE Freq. Control Symp. Proc. 43, 89–93 (1989)

    Google Scholar 

  12. A. N. Luiten, A. G. Mann, M. E. Costa, D. G. Blair: Power stabilized cryogenic sapphire resonator oscillator. IEEE Trans. Instrum. Meas. 44, 132–135 (1995)

    Article  Google Scholar 

  13. A. N. Luiten, A. G. Mann, D. G. Blair: Cryogenic sapphire microwave resonator-oscillator with exceptional stability. Electron. Lett. 30, 417–419 (1994)

    Article  Google Scholar 

  14. Crystal Systems Inc., 27 Congress St., Salem, MA 01970, USA, private communication

    Google Scholar 

  15. A. N. Luiten, A. G. Mann, D. G. Blair: Ultra High-Q factor cryogenic sapphire resonator. Electron. Lett. 29, 879–881 (1993)

    Article  ADS  Google Scholar 

  16. A. N. Luiten, A. G. Mann, D. G. Blair: Paramagnetic susceptibility and permittivity measurements at microwave frequencies in cryogenic sapphire resonators. J. Phys. D 29, 2082–2090 (1996)

    Article  ADS  Google Scholar 

  17. A. N. Luiten, A. G. Mann, N. McDonald, D. G. Blair: Latest results of the UWA cryogenic sapphire oscillator. IEEE Freq. Control Symp. Proc. 49, 433–437 (1995)

    Google Scholar 

  18. G. J. Dick, R. T.Wang: Cryo-cooled sapphire oscillator for the Cassini Ka-band experiment. IEEE Int. Freq. Control Symp. Proc. 51, 1009–1014 (1997)

    Article  Google Scholar 

  19. G. J. Dick, R. T.Wang, R. T. Tjoelker: Cryo-cooled sapphire oscillator with ultra-high stability. IEEE Int. Freq. Control Symp. Proc. 52, 528–533 (1998)

    Google Scholar 

  20. J. P. Turneaure, S. Stein: Atomic Masses and Fundamental Constants V (Plenum, New York 1976)pp. 636–642

    Google Scholar 

  21. G. Santarelli, P. Laurent, A. Clairon, G. J. Dick, C. A. Greenhall, C. Audoin: Theoretical description and experimental evaluation of the effect of the interrogation oscillator frequency noise on the stability of a pulsed atomic frequency standard. IEEE 10th Europ. Freq. Time Forum, Conf. Publ. No 418 (1996)pp. 66–71

    Google Scholar 

  22. G. D. Rovera, G. Santarelli, A. Clairon: Frequency synthesis chain for the atomic fountain primary frequency standard. IEEE Trans. Ultrason. Ferroelec. Freq. Control 43, 354–358 (1996)

    Article  Google Scholar 

  23. P. T. H. Fisk, M. J. Sellars, M. A. Lawn, C. Coles: Accurate measurement of the 12.6 GHz “Clock” transition in trapped 171Yb+. IEEE Trans. Ultrason. Ferroelec. Freq. Control 44, 344–354 (1997)

    Article  Google Scholar 

  24. A. G. Mann, G. Santarelli, S. Chang, A. N. Luiten, P. Laurent, C. Salomon, D. G. Blair, A. Clairon: A high stability atomic fountain clock using a cryogenic sapphire interrogation oscillator. IEEE Freq. Control Symp. Proc. 52, 13–22 (1998)

    Google Scholar 

  25. R. L. Toelker, C. Bricker, W. Diener, R. L. Hamell, A. Kirk, P. Kuhnle, L. Maleki, J. D. Prestage, D. Santiago, D. Seidel, D. A. Stowers, R. L. Syndnor, T. Tucker: A mercury ion frequency standard engineering prototype for the NASA Deep Space Network. IEEE Int. Freq. Control Symp. Proc. 50, 1073–1081 (1996)

    Article  Google Scholar 

  26. T. C. P. Chui, P. Day, I. Hahn, A. E. Nash, D. R. Swanson, J. A. Nissem, P. R. Williamson, J. A. Lipa: High resolution thermometers for ground and space applications. Cryogenics 34, 417–420 (1994)

    Article  ADS  Google Scholar 

  27. S. Buchman, J. P. Turneaure, J. A. Lipa, M. Dong, K. M. Cumbermack, S. Wang: A superconducting microwave oscillator clock for use on the space station. IEEE Int. Freq. Control Symp. Proc. 52, 534–539 (1998)

    Google Scholar 

  28. J. Krupka, K. Derzakowski, A. Abramowicz, M. Tobar, R. Geyer: Complex permittivity measurements of extremely low loss dielectric materials using whispering gallery modes. 1997 IEEE Int. Microwave Symp. Dig. 3, 1347–1350 (1997)

    Article  Google Scholar 

  29. B. M. Garin: One phonon dielectric losses by excitation of sound. Sov. Phys. Solid State 32, 1917–1920 (1990)

    Google Scholar 

  30. A. G. Mann, A. N. Luiten, D. G. Blair, M. J. Buckingham: Ultrastable cryogenic sapphire dielectric microwave resonators. Proc. IEEE Freq. Control Symp. 46, 167–171 (1992)

    Article  Google Scholar 

  31. S. Thakoor, D. M. Strayer, G. J. Dick, J. E. Mercereau: A lead-on-sapphire superconducting cavity of superior quality. J. Appl. Phys. 59, 854–858 (1986)

    Article  ADS  Google Scholar 

  32. D. G. Blair, S. Chang, E. N. Ivanov, A. N. Luiten, A. G. Mann, M. E. Tobar, R. A. Woode: Ultrastable and ultralow phase noise microwave sapphire oscillators. Proc. NASA Workshop on the Scientific Applications of Clocks in Space, JPL pub 97-15, 101–125 (1996)

    Google Scholar 

  33. S. N. Buckley, P. Agnew, G. P. Pells: Cryogenic dielectric properties of sapphire at 2.45 GHz. J. Phys. D 27, 2202–2209 (1994)

    Article  ADS  Google Scholar 

  34. A. G. Mann, D. G. Blair, M. J. Buckingham: Ultra-stable cryogenic sapphire dielectric microwave resonators: mode frequency—temperature compensation by residual paramagnetic impurities. J. Phys. D 25, 1105–1109 (1992)

    Article  ADS  Google Scholar 

  35. J. G. Hartnett, M. E. Tobar, A. G. Mann, J. Krupka, E. N. Ivanov: Temperature dependence of Ti3+ doped sapphire whispering gallery mode resonator. Electron. Lett. 34, 195–196 (1998)

    Article  Google Scholar 

  36. J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka, R. Geyer: Frequency-temperature compensation in Ti3+ and Ti4+ doped sapphire whispering gallery mode resonators. IEEE Trans. Ultrason. Ferroelec. Freq. Control 46, 993–1000 (1999)

    Article  Google Scholar 

  37. A. N. Luiten: Sapphire secondary frequency standards. Ph.D. thesis, Physics Department, University of Western Australia (1995)

    Google Scholar 

  38. S. K. Jones, D. G. Blair, M. J. Buckingham: The effects of paramagnetic impurities on the frequency of sapphire loading superconducting resonators. Electron. Lett. 24, 346–347 (1988)

    Article  Google Scholar 

  39. A. N. Luiten, A. G. Mann, A. J. Giles, D. G. Blair: Ultra-stable sapphire resonator-oscillator. IEEE Trans. Instrum. Meas. 42, 439–443 (1993)

    Article  Google Scholar 

  40. L. S. Kornienko, A. M. Prokhorov: Electronic paramagnetic resonance of the Ti3+ ion in corundum. Sov. Phys. JETP 11, 1189–1190 (1960)

    Google Scholar 

  41. S. Chang, A. G. Mann, A. N. Luiten, D. G. Blair: Measurements of radiation pressure effect in cryogenic sapphire dielectric resonators. Phys. Rev. Lett. 79, 2141–2144 (1997)

    Article  ADS  Google Scholar 

  42. D. G. Santiago, G. J. Dick, A. Prata: Mode control of cryogenic whispering-gallery mode sapphire dielectric-ring resonators. IEEE Trans. Microwave Theory Tech. 42, 52–55 (1994)

    Article  ADS  Google Scholar 

  43. D. G. Santiago, G. J. Dick: Microwave frequency discriminator with a cryogenic sapphire resonator for ultra-low phase noise. IEEE Freq. Control Symp. Proc. 46, 176–182 (1992)

    Article  Google Scholar 

  44. R. C. Taber, C. A. Florey: Microwave oscillators incorporating cryogenic sapphire dielectric resonators. IEEE Trans. Ultrason. Ferroelec. Freq. Control 42, 111–119 (1995)

    Article  Google Scholar 

  45. M. E. Tobar, A. J. Giles, S. Edwards, J. Searls: High-Q thermo-electric stabilized sapphire microwave resonators for low noise applications. IEEE Trans. Ultrason. Ferroelec. Freq. Control 41, 391–396 (1994)

    Article  Google Scholar 

  46. V. B. Braginskii, S. P. Vyatchanin, V. I. Panov: Limiting stability of the frequency of self-excited oscillators. Sov. Phys. Doklady 24, 562–563 (1979)

    ADS  Google Scholar 

  47. D. G. Santiago, G. J. Dick, R. T. Wang: Frequency stability of 10-13 in a compensated sapphire oscillator operating above 77 K. IEEE Int. Freq. Control Symp. Proc. 50, 772–775 (1996)

    Article  Google Scholar 

  48. P. Boolchand, G. H. Lemon, W. J. Bresser, R. N. Enzweller, R. Harris: A general purpose cold finger using a vibration-free mounted He closed-cycle cryostat. Rev. Sci. Instrum. 66, 3015–3057 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mann, A.G. (2001). Ultrastable Cryogenic Microwave Oscillators. In: Luiten, A.N. (eds) Frequency Measurement and Control. Topics in Applied Physics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44991-4_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44991-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67694-2

  • Online ISBN: 978-3-540-44991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics