Skip to main content

Accurate Optical-Frequency Synthesis

  • Chapter
  • First Online:
  • 676 Accesses

Part of the book series: Topics in Applied Physics ((TAP,volume 79))

Abstract

This contribution reports on devices that are of critical importance to the development of an accurate and phase-coherent optical synthesizer. In particular, we report on techniques to generate optical signals at accurate offset frequencies from a given optical signal, as well as techniques that can be used to link the optical and microwave frequency domains. A detailed presentation of potential noise sources of the various techniques enables a calculation of the likely frequency stability of the synthesizer. When those calculations are combined with experimentally measured results, we demonstrate that the long-hoped-for goal of optical synthesis at the fractional frequency level of 10−15 (≈ 1Hz) level is readily achievable with present-day technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Hall: Frequency stabilized lasers —a parochial review. Proc. SPIE 1837, 2–15 (1992)

    Article  ADS  Google Scholar 

  2. T. W. Hänsch: High resolution spectroscopy of hydrogen. In: The Hydrogen Atom. G. F. Bassani, M. Inguscio, T. W. Hänsch (Eds.) (Springer, Berlin, Heidelberg 1989) pp. 93–102

    Google Scholar 

  3. B. Glance: Computer-controlled optical frequency synthesizer. Proc. SPIE 1837, 414–418 (1992)

    Article  ADS  Google Scholar 

  4. D. W. Allan: Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966)

    Article  Google Scholar 

  5. D. W. Allan, J. H. Shoaf, D. Halford: Statistics of time and frequency data analysis. In: Time and Frequency: Theory and Fundamentals. B.E. Blair (Ed.) (National Bureau of Standards, Washington, DC 1974)Vol. 140

    Google Scholar 

  6. T. Fujii, T. Nayuki, K. Nemoto, M. Kozuma, M. Kourogi, M. Ohtsu: Accurate frequency control of external-cavity laser diode by sideband locking technique. Jpn. J. Appl. Phys. 35, 6090–6094 (1996)

    Article  ADS  Google Scholar 

  7. C. Freed, J. W. Bielinski, W. Lo: Programmable, secondary frequency standard baed infrared synthesizer using tunable lead-salt diode lasers. Proc. SPIE 438, 119–124 (1983)

    Google Scholar 

  8. D. Mayden: Acousto-optical pulse modulators. J. Quantum Electron. 6, 15–24 (1970)

    Article  ADS  Google Scholar 

  9. W. Oates, F. Bondu, R. W. Fox, L. Hollberg: A diode-laser optical frequency standard based on laser-cooled Ca atoms: Sub-kilohertz spectroscopy by optical shelving detection. Eur. Phys. J. D 7, 449–460 (1999)

    Article  ADS  Google Scholar 

  10. P. Bouyer, T. L. Gustavson, K. G. Haritos, M. A. Kasevich: Microwave signal generation with optical injection locking. Opt. Lett. 21, 1502–1504 (1996)

    Article  ADS  Google Scholar 

  11. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan: Handbook of Nonlinear Optical Crystals. Springer Ser. Opt. Sci. 64 (Springer, Heidelberg, Berlin 1991)

    Google Scholar 

  12. R. L. Sutherland: Handbook of Nonlinear Optics. (Marcel Dekker, New York 1996)

    Google Scholar 

  13. F. Zernike, J. E. Midwinter: Applied Nonlinear Optics. Wiley Ser. Pure Appl. Opt. (Wiley, New York 1973)

    Google Scholar 

  14. N. Bloembergen: Nonlinear Optics. Frontiers Phys. (Benjamin, New York 1965)

    Google Scholar 

  15. M. Kasevich, S. Chu: Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69, 1741–1744 (1992)

    Article  ADS  Google Scholar 

  16. K. Szymaniec, S. Ghezali, L. Cognet, A. Clairon: Injection locking of diode lasers to frequency modulated source. Opt. Commun. 144, 50–54 (1997)

    Article  ADS  Google Scholar 

  17. S. Bourzeix, de Beauvoir, F. Nez, F. de Tomasi, L. Julien, F. Biraben: Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser. Opt. Commun. 133, 239–244 (1997)

    Article  ADS  Google Scholar 

  18. S. Sayama, M. Ohtsu: Tunable UV cw generation by frequency tripling of a Ti:sapphire laser. Opt. Commun. 137, 295–298 (1997)

    Article  ADS  Google Scholar 

  19. W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace: 2.5 W, continuous wave, 629 nm solid-state source. OSA Topics Adv. Solid State Lasers 19, 68–71 (1998)

    Google Scholar 

  20. D. Touahri, F. Nez, M. Abed, J. J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, R. Felder: LPTF frequency synthesis chain: results and improvement for the near future. IEEE Trans. Instrum. Meas. 44(2), 170–172 (1995)

    Article  Google Scholar 

  21. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner: First phase-coherent frequency measurement of visible radiation. Phys. Rev. Lett. 76(1), 18–21 (1996)

    Article  ADS  Google Scholar 

  22. F. Schmidt-Kaler, D. Leibfried, S. eel, Zimmermann, W. König, M. Weitz, T. W. Hänsch: High-resolution spectroscopy of the 1S-2S transition of atomic hydrogen and deuterium. Phys. Rev. A 51(4), 2789–2800 (1995)

    Article  ADS  Google Scholar 

  23. B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, J. J. Zondy: Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: New determination of the Rydberg constant. Phys. Rev. Lett. 78(3), 440–443 (1997)

    Article  ADS  Google Scholar 

  24. D. A. Jennings, R. Pollock, F. R. Petersen, R. E. Drullinger,K. M. Evanson, J. S. Wells, J. L. Hall, H. P. Layer: Direct frequency measurement of the I2-stabilized He-Ne 473-THz (633-nm) laser. Opt. Lett. 8, 136–138 (1983)

    Article  ADS  Google Scholar 

  25. A. A. Madej, J. E. Bernard, B. G. Whitford, L. Marmet, K. J. Siemsen: The strontium single ion optical frequency standard: preliminary absolute frequency measurements using a phase locked optical frequency chain. In: Conf. on Precision Electromagnetic Measurements T. L. Nelson (Ed.) (National Bureau of Standards, Washington, DC 1998) pp. 323–324

    Google Scholar 

  26. D. W. Faries, K. A. Gehring, P. L. Richards, Y. R. Shen: Tunable far-infrared radiation generated from the difference frequency between two ruby lasers. Phys. Rev. 180(2), 363–365 (1969)

    Article  ADS  Google Scholar 

  27. H. Odashima, L. R. Zink, M. Evenson: Tunable far-infrared spectroscopy extended to 9.1 THz. Opt. Lett. 24(6), 406–407 (1999)

    Article  ADS  Google Scholar 

  28. B. Lai, N. C. Wong, L. K. Cheng: Continuous-wave tunable light source at 1.6 m by difference-frequency mixing in CsTiOAsO4. Opt. Lett. 20(17), 779–1781 (1995)

    Article  ADS  Google Scholar 

  29. N. C. Wong: Optical frequency counting from the UV to the near IR. Opt. Lett. 17(16), 1155–1157 (1992)

    Article  ADS  Google Scholar 

  30. N. C. Wong: Optical-to-microwave frequency chain utilizing a two-laser-based optical parametric oscillator network. Appl. Phys. B 61(2), 143–149 (1995)

    Article  ADS  Google Scholar 

  31. P. T. Nee, N. C. Wong: Optical frequency division by 3 of 532 nm in periodically poled lithium niobate with a double grating. Opt. Lett. 23(1), 46–48 (1998)

    Article  ADS  Google Scholar 

  32. O. Pfister, M. Mürtz, J. S. Wells, L. Hollberg, J. T. Murray: Division by 3 of optical frequencies by use of difference-frequency generation in noncritically phase-matched RbTiOAsO4. Opt. Lett. 21, 1387–1389 (1996)

    Article  ADS  Google Scholar 

  33. J. E. Bernard, B. G. Whitford, L. Marmet: Phase-locked optical divide-by-3 system for visible radiation. Opt. Lett. 24(2), 98–1000 (1999)

    Article  ADS  Google Scholar 

  34. J. A. Giordmaine, R. C. Miller: Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965)

    Article  ADS  Google Scholar 

  35. R. Graham, H. Haken: The quantum fluctuations of the optical parametric oscillator I. Zeit. Phys. 210, 276–302 (1968)

    Article  ADS  Google Scholar 

  36. K. Schneider, P. Kramper, S. Schiller, J. Mlynek: Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled Li:NbO3. Opt. Lett. 22(17), 1293–1295 (1997)

    Article  ADS  Google Scholar 

  37. D. Lee, N. C. Wong: High-performance tunable optical parametric oscillator. Proc. SPIE 1837, 419–425 (1992)

    Article  ADS  Google Scholar 

  38. T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, S. Ohshima: Characteristics of a cw monolithic optical parametric oscillator. Appl. Phys. B 66, 719–725 (1998)

    Article  ADS  Google Scholar 

  39. L. R. Brothers, D. Lee, N. C. Wong: Terahertz optical frequency comb generation and phase locking of an optical parametric oscillator at 665 GHz. Opt. Lett. 19, 245–247 (1994)

    Article  ADS  Google Scholar 

  40. M. E. Klein, D. H. Lee, J. P. Meyn, K. J. Boller, R. Wallenstein: Single resonant continuous-wave optical parametric oscillator pumped by a diode laser. Opt. Lett. 24, 1142–1144 (1999)

    Article  ADS  Google Scholar 

  41. T. Ikegami, S. Slyusarev, S.I. Ohshima: Monolithic cw optical parametric oscillators for optical frequency measurement. In: Conference on Precision Electromagnetic Measurements, T. L. Nelson (Ed.) (National Bureau of Standards, Washington, DC 1998) pp. 469-470

    Google Scholar 

  42. S. Schiller, R. L. Byer: Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator. J. Opt. Soc. Am. B 10, 1696–1707 (1993)

    Article  ADS  Google Scholar 

  43. G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, M. H. Dunn: Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy. Opt. Lett. 24, 397–399 (1999)

    Article  ADS  Google Scholar 

  44. E. J. Mason, N. C. Wong: Observation of two distinct phase states in a self-phase-locked type II phase-matched optical parametric oscillator. Opt. Lett. 23, 1733–1735 (1998)

    Article  ADS  Google Scholar 

  45. C. D. Nabors, S. T. Yang, T. Day, R. L. Byer: Coherence properties of a doubly resonant monolithic optical parametric oscillator. J. Opt. Soc. Am. B 7, 815–820 (1990)

    Article  ADS  Google Scholar 

  46. D. H. Lee, M. E. Klein, J. P. Meyn, P. Groß, R. Wallenstein, J. Boller: Self-injection-locking of a CW OPO by intracavity frequency-doubling the idler wave. Opt. Express 5(5), 114–119 (1999)

    Article  ADS  Google Scholar 

  47. R. Wynands, O. Coste, C. Rembe, D. Meschede: How accurate is optical second-harmonic generation? Opt. Lett. 20(10), 1095–1097 (1995)

    Article  ADS  Google Scholar 

  48. T. Ikegami, S. Slyusarev, S.i. Ohshima, E. Sakuma: Accuracy of an optical parametric oscillator as an optical frequency divider. Opt. Commun. 127, 69–72 (1996)

    Article  ADS  Google Scholar 

  49. M. Kourogi, Widiyatomoko, Y. Takeuchi, M. Ohtsu: Limit of optical-frequency comb generation due to material dispersion. IEEE J. Quantum Electron. 31, 2120–2125 (1995)

    Article  ADS  Google Scholar 

  50. K. Imai, M. Kourogi, M. Ohtsu: 30-THz span optical frequency comb generation by self-phase modulation in an optical fiber. IEEE J. Quantum Electron. 34, 54–60 (1998)

    Article  ADS  Google Scholar 

  51. Widiyatmoko, Imai, M. Kourogi, M. Ohtsu: Second-harmonic generation of an optical frequency comb at 1.55µOpt. Lett. 24, 315–317 (1999)

    Article  ADS  Google Scholar 

  52. L. R. Brothers, N. C. Wong: Optical frequency comb generation for terahertz difference-frequency measurements. Proc. SPIE 2378, 222–229 (1995)

    ADS  Google Scholar 

  53. B. Widiyatmoko, M. Kourogi, M. Ohtsu: Linking two optical frequency combs by heterodyne optical phase locking between diode lasers at 2.6 THz frequency-difference. IEEE Photon. Technol. Lett. 11, 460–462 (1999)

    Article  ADS  Google Scholar 

  54. W. Wang, M. Ohtsu: Generation of frequency-tunable light and frequency reference grids using diode lasers for one-petahertz optical frequency sweep generator. IEEE J. Quantum Electron. 31, 456–467 (1995)

    Article  ADS  Google Scholar 

  55. S. Slyusarev, T. Ikegami, S.i. Ohshima, E. Sakuma: Frequency measurement of accurate sidebands of an optical frequency comb generator. Opt. Commun. 135, 223–226 (1997)

    Article  ADS  Google Scholar 

  56. T. Udem, J. Reichert, T. W. Hänsch, M. Kourogi: Accuracy of optical frequency comb generators and optical frequency interval divider chains. Opt. Lett. 23(17), 1387–1389 (1998)

    Article  ADS  Google Scholar 

  57. K. Imai, Y. Zhao, M. Kourogi, B. Widiyatmoko, M. Ohtsu: Accuracy of optical frequency comb generation in optical fibre. Opt. Lett. 24, 214–216 (1999)

    Article  ADS  Google Scholar 

  58. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller: Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69(4) (1999) 327–332

    Article  ADS  Google Scholar 

  59. T. Udem, J. Reichert, R. Holzworth, T. W. Hänsch, J. Knight, W. J. Wadsworth, and P. St. J. Russell: The Measurement of Optical Frequencies with Mode-Locked Lasers, In; 2000 Conference on Precision Electromagnetic Measurements, John Hunter and Leigh Johnson (Ed.) (Institute of Electrical and Electronic Engineers, Sydney, Australia, 2000) pp. 683–684

    Chapter  Google Scholar 

  60. S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff and J. L. Hall: Direct RF to Optical Frequency Measurements with a Femtosecond Laser Comb, In: 2000 Conference on Precision Electromagnetic Measurements, John Hunter and Leigh Johnson (Ed.) (Institute of Electrical and Electronic Engineers, Sydney, Australia, 2000) pp. 687–688

    Chapter  Google Scholar 

  61. T. Udem, J. Reichert, R. Holzwarth, T. W. Hänsch: Accurate measurement of large optical frequency differences with a mode locked laser. Opt. Lett. 24(13), 881–883 (1999)

    Article  ADS  Google Scholar 

  62. D. von der Linde: Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B 39, 201–217(1986)

    Article  ADS  Google Scholar 

  63. H. A. Haus, A. Mecozzi: Noise of mode-locked lasers. IEEE J. Quantum Electron. 29, 983–996 (1993)

    Article  ADS  Google Scholar 

  64. H. Tsuchida: Time-interval analysis of laser-pulse-timing fluctuations. Opt. Lett. 24, 1434–1436 (1999)

    Article  ADS  Google Scholar 

  65. J. M. Shieh, S. C. Liu, C. L. Pan: Characterization and reduction of phase noise in passively mode-locked ti:sapphire lasers with intracavity saturable absorbers. J. Opt. Soc. Am. B 15, 1802–1807 (1998)

    Article  ADS  Google Scholar 

  66. D. E. Spence, J. M. Dudley, K. Lamb, W. E. Sleat, W. Sibbett: Nearly quantum-limited timing jitter in a self-mode-locked Ti:sapphire laser. Opt. Lett. 19, 481–483 (1994)

    Article  ADS  Google Scholar 

  67. D. E. Spence, J. M. Evans, W. E. Sleat, W. Sibbett: Regeneratively initiated self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 1762–1764 (1991)

    Article  ADS  Google Scholar 

  68. G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett: Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe algainp laser diode. Opt. Lett. 22, 1639–1641 (1997)

    Article  ADS  Google Scholar 

  69. M. Aoyama, K. Yamakawa: Noise characterization of an all-solid-sate mirror dispersion-controlled 10-fs Ti:sapphire laser. Opt. Commun. 140, 255–258 (1997)

    Article  ADS  Google Scholar 

  70. T. B. Simpson, T. Day, F. Doft, M. M. Malley, G. W. Sutton: Frequency-stabilized mode-locked solid-state laser system for precision range-doppler imaging. IEEE J. Quantum Electron. 29, 2489–2496 (1993)

    Article  ADS  Google Scholar 

  71. J. Reichert, R. Holzwarth, T. Udem, T. W. Hänsch: Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, (1999) pp. 59–68

    Article  ADS  Google Scholar 

  72. M. Prevedelli, T. Freegarde, T. W. Hänsch: Phase locking of grating-tuned diode lasers. Appl. Phys. B 60, S241–S248 (1995)

    Google Scholar 

  73. T. Udem, J. Reichert, R. Holzwarth, T. W. Hänsch: Absolute optical frequency measurement of a cesium D1 line with a mode locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999)

    Article  ADS  Google Scholar 

  74. M. J. Snadden, R. B. M. Clarke, E. Riis: Injection-locking technique for heterodyne optical phase locking of a diode laser. Opt. Lett. 22, 892–894 (1997)

    Article  ADS  Google Scholar 

  75. G. Wenke, S. Saito: Phase locking of semiconductor lasers using homodyne detection and negative electrical feedback. Jpn. J. Appl. Phys. 24, L908–L910 (1985)

    Article  ADS  Google Scholar 

  76. L. G. Kazovsky: Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations and laser linewidth requirements. J. Lightwave Technol. 4, 182–195 (1986)

    Article  ADS  Google Scholar 

  77. M. Ohtsu: Highly Coherent Semiconductor Lasers. The Artech House Opto-electron. Library, (Artech House, Boston 1992)

    Google Scholar 

  78. M. Kourogi, C. H. Shin, M. Ohtsu: A 134 MHz bandwidth homodyne optical phase locked loop of semiconductor lasers. IEEE Photon. Technol. Lett. 3, 270–272 (1991)

    Article  ADS  Google Scholar 

  79. K. Kuboki, M. Ohtsu: Frequency offset locking of AlGaAs semiconductor lasers. IEEE J. Quantum Electron. 23, 388–394 (1987)

    Article  ADS  Google Scholar 

  80. C. H. Shin, M. Ohtsu: Heterodyne optical phase-locked loop by confocal fabryperot cavity coupled AlGaAs lasers. IEEE Photon. Technol. Lett. 2, 297–300 (1990)

    Article  ADS  Google Scholar 

  81. B. Dahmani, L. Hollberg, R. Drullinger: Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett. 12, 876–878 (1987)

    Article  ADS  Google Scholar 

  82. H. Li, H. R. Telle: Efficient frequency noise reduction of GaAlAs semiconductor lasers by optical feedback from an external high-finesse resonator. IEEE J. Quantum Electron. 25, 257–264 (1989)

    Article  ADS  Google Scholar 

  83. E. A. Swanson, S. B. Alexander, R. S. Bondurant: Wideband frequency noise reduction and FM equalization in AlGaAs lasers using electrical feedback. Opt. Lett. 16, 1403–1405 (1991)

    Article  ADS  Google Scholar 

  84. J. Harrison, A. Mooradian: Linewidth and offset frequency locking of external cavity GaAlAs lasers. IEEE J. Quantum Electron. 25, 1152–1155 (1989)

    Article  ADS  Google Scholar 

  85. Harvey, C. J. Myatt: External cavity diode laser using a grazing incidence diffraction grating. Opt. Lett. 16, 910–912 (1991)

    Article  ADS  Google Scholar 

  86. G. Santarelli, A. Clairon, S. N. Lea, G. M. Tino: Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz. Opt. Commun. 104, 339–344 (1994)

    Article  ADS  Google Scholar 

  87. H. R. Telle, D. Meschede, T. W. Hänsch: Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies. Opt. Lett. 15, 532–534 (1990)

    Article  ADS  Google Scholar 

  88. R. Wynands, T. Mukai, T. W. Hänsch: Coherent bisection of optical frequency intervals as large as 530 THz. Opt. Lett. 17, 1749–1751 (1992)

    Article  ADS  Google Scholar 

  89. C. Koch, H. R. Telle: Bridging THz-frequency gaps in the near ir by coherent four-wave mixing in GaAlAs laser diodes. Opt. Commun. 91, 371–376 (1992)

    Article  ADS  Google Scholar 

  90. T. Mukai, R. Wynands, T. W. Hänsch: Optical pulse synthesis with three cw semiconductor lasers using nonlinear phase-locking. Opt. Commun. 95, 71–76 (1993)

    Article  ADS  Google Scholar 

  91. R. P. Kovacich, A. N. Luiten: Frequency stability limits of optical frequency intervals in new generation optical to microwave frequency chains. In: 13th Europ. Frequency and Time Forum and 1999 IEEE Int. Frequency Control Symp., Besançon, France (1999) pp. 626–629

    Google Scholar 

  92. K. Shimoda: Optical frequency counters. Appl. Phys. B63, 507–510 (1996)

    ADS  Google Scholar 

  93. Nakagawa, M. Kourogi, M. Ohtsu: Proposal of a frequency synthesis chain between the microwave and optical frequencies of the Ca intercombination line at 657 nm using diode lasers. Appl. Phys. B 57, 425–430 (1993)

    Article  ADS  Google Scholar 

  94. A. N. Luiten, A. G. Mann, N. J. McDonald, D. G. Blair: Latest results of the UWA cryogenic sapphire oscillator. Int. Freq. Control Symp. Proc. 49, 433–437 (1995)

    Google Scholar 

  95. S. Wolff, D. Messerschmidt, H. Fouckhardt: Fourier-optical selection of higher order transverse modes in broad area lasers. Opt. Express 5(3), 32–37 (1999)

    Article  ADS  Google Scholar 

  96. J. J. McFerran, A. N. Luiten: Development of an optical frequency interval divider spanning 282 THz. In: European Frequency and Time Forum (IEE, Turin 2000) in press

    Google Scholar 

  97. A. N. Luiten, R. P. Kovacich, J. J. McFerran: Optical frequency synthesis with 1 Hz resolution. IEEE Trans. Instrum. Meas. 48, 558–562 (1999)

    Article  Google Scholar 

  98. S. Uemura, K. Torizuka: Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser. Opt. Lett. 24, 780–782 (1999)

    Article  ADS  Google Scholar 

  99. A. J. Viterbi: Principles of Coherent Communication (McGraw-Hill, New York 1966)

    Google Scholar 

  100. J. L. Stensby: Phase-locked Loops: Theory and Applications (CRC Press, Boca Raton 1997)

    Google Scholar 

  101. J. Wilson, J. Hawkes: Optoelectronics: An Introduction (Prentice Hall, New York 1989)

    Google Scholar 

  102. M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, S. Urabe: Sum-frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers. Jpn. J. Appl. Phys. 33, 1599–1602 (1994)

    Article  ADS  Google Scholar 

  103. L. E. Myers, R. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce: Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B 12, 2102–2116 (1995)

    Article  ADS  Google Scholar 

  104. J. P. Meyn, M. E. Klein, D. Woll, R. Wallenstein, D. Rytz: Periodically poled potassium niobate for second-harmonic generation at 463 nm. Opt. Lett. 24, 1154–1156 (1999)

    Article  ADS  Google Scholar 

  105. R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, L. Erman: Continuous-wave quasi-phase macthed generation of 60mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate. Opt. Lett. 24, 1293–1295 (1999)

    Article  ADS  Google Scholar 

  106. J. C. Baumert, P. Günter: Noncritically phase-matched sum frequency generation and image up-conversion in KNbO3 crystals. Appl. Phys. Lett. 50, 554–556 (1987)

    Article  ADS  Google Scholar 

  107. G. D. Boyd, A. Ashkin, J. M. Dziedzic, D. A. Kleinman: Second-harmonic generation of light with double refraction. Phys. Rev. 137(4 A), A1305–A1320 (1965)

    Article  ADS  Google Scholar 

  108. B. Zysset, I. Biaggio, P. Günter: Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence. J. Opt. Sci. Am. B 9, 380–386 (1992)

    Article  ADS  Google Scholar 

  109. J. J. McFerran, A. N. Luiten: Efficient continuous-wave nonlinear ultraviolet generation in LiB3O5 and RbD2AsO4. Appl. Opt. (2000) in press

    Google Scholar 

  110. G. Ascheid, H. Meyr: Cycle slips in phase-locked loops: A tutorial survey. IEEE Trans. Commun. 30, 2228–2241 (1982)

    Article  Google Scholar 

  111. H. R. Telle: Absolute measurement of optical frequencies. In: Frequency Control of Semiconductor Lasers, M. Ohtsu (Ed.) (Wiley, New York 1996)

    Google Scholar 

  112. F. M. Gardner, J. F. Heck: Angle modulation limits of a noise-free phase lock loop. IEEE Trans. Commun. 26, 1129–1136 (1978)

    Article  Google Scholar 

  113. P. Birch, M. J. Downs: An updated Edlén equation for the refractive index of air. Metrologia 30, 155–162 (1993)

    Article  ADS  Google Scholar 

  114. U. Sterr, B. Lipphardt, A. Wolf, H. R. Telle: A novel stabilization method for an opptical frequency comb generator. IEEE Trans. Instrum. Meas. 48, 574–577 (1999)

    Article  Google Scholar 

  115. T. W. Hänsch, B. Couillaud: Laser frequency stabilization by polarisation spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980)

    Article  ADS  Google Scholar 

  116. A. N. Luiten, R. P. Kovacich, J. J. McFerran: Optical frequency synthesis. In: Proc. 53rd International Frequency Control Symposium (FCS)/ 13th European Frequency and Time Forum, Besançon, France (1999) pp. 635–638

    Google Scholar 

  117. M. S. Demokan: Mode-Locking in Solid-State and Semiconductor Lasers (Wiley, Chichester 1982)

    Google Scholar 

  118. M. J. W. Rodwell, D. M. Bloom, K. J. Weingarten: Subpicosecond laser timing stabilization. IEEE J. Quantum Electron. 25, 817–827 (1989)

    Article  ADS  Google Scholar 

  119. P. L. Hansen, Pedersen, P. Buchhave, T. Skettrup: Frequency tuning and stability of Nd:YVO4 in a dual coupled cavity. Opt. Commun. 127, 353–362 (1996)

    Article  ADS  Google Scholar 

  120. M. Hyodo, T. Carty, K. Sakai: Near shot-noise-level relative frequency stabilization of a laser-diode-pumped Nd:YVO4 microchip laser. Appl. Opt. 35, 4749–4753 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luiten, A.N. (2001). Accurate Optical-Frequency Synthesis. In: Luiten, A.N. (eds) Frequency Measurement and Control. Topics in Applied Physics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44991-4_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-44991-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67694-2

  • Online ISBN: 978-3-540-44991-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics