Skip to main content

Fair versus Unrestricted Bin Packing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1851))

Abstract

We consider the Unrestricted Bin Packing problem where we have bins of equal size and a sequence of items. The goal is to maximize the number of items that are packed in the bins by an on-line algorithm. We investigate the power of performing admission control on the items, i.e., rejecting items while there is enough space to pack them, versus behaving fairly, i.e., rejecting an item only when there is not enough space to pack it. We show that by performing admission control on the items, we get better performance for various measures compared with the performance achieved on the fair version of the problem. Our main result shows that we can pack 2/3 of the items for sequences in which the optimal can pack all the items.

Supported in part by the Israel Science Foundation, and by a USA-Israel BSF grant.

Supported in part by the Danish Natural Science Research Council (SNF).

In earlier papers [4,5,6], this competitive ratio on accommodating sequences was called the accommodating ratio. The change is made here for consistency with common practice in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-Competitive On-Line Routing. In 34th IEEE Symposium on Foundations of Computer Science, pages 32–40, 1993.

    Google Scholar 

  2. B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive Non-Preemptive Call Control. In Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms, pages 312–320, 1994.

    Google Scholar 

  3. B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. On-line Admission Control and Circuit Routing for High Performance Computation and Communication. In 35th IEEE Symposium on Foundations of Computer Science, pages 412–423, 1994.

    Google Scholar 

  4. J. Boyar and K. S. Larsen. The Seat Reservation Problem. Algorithmica, 25:403–417, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Boyar, K. S. Larsen, and M. N. Nielsen. The Accommodating Function — A Generalization of the Competitive Ratio. Tech. report 24, Department of Mathematics and Computer Science, University of Southern Denmark, Main Campus: Odense University, 1998. Extended version submitted for journal publication 1999.

    Google Scholar 

  6. J. Boyar, K. S. Larsen, and M. N. Nielsen. The Accommodating Function — A Generalization of the Competitive Ratio. In Sixth International Workshop on Algorithms and Data Structures, volume 1663 of Lecture Notes in Computer Science, pages 74–79. Springer-Verlag, 1999.

    Chapter  Google Scholar 

  7. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation Algorithms for Bin Packing: A Survey. In Dorit S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, chapter 2, pages 46–93. PWS Publishing Company, 1997.

    Google Scholar 

  8. E. G. Coffman, Jr., J. Y-T. Leung, and D. W. Ting. Bin Packing: Maximizing the Number of Pieces Packed. Acta Informatica, 9:263–271, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. G. Coffman, Jr. and Joseph Y-T. Leung. Combinatorial Analysis of an Efficient Algorithm for Processor and Storage Allocation. SIAM J. Comput., 8:202–217, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Csirik and G. Woeginger. On-Line Packing and Covering Problems. In Gerhard J. Woeginger Amos Fiat, editor, Online Algorithms, volume 1442 of Lecture Notes in Computer Science, chapter 7, pages 147–177. Springer-Verlag, 1998.

    Chapter  Google Scholar 

  11. A. Fiat. Personal communication, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azar, Y., Boyar, J., Favrholdt, L.M., Larsen, K.S., Nielsen, M.N. (2000). Fair versus Unrestricted Bin Packing. In: Algorithm Theory - SWAT 2000. SWAT 2000. Lecture Notes in Computer Science, vol 1851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44985-X_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-44985-X_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67690-4

  • Online ISBN: 978-3-540-44985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics