Advertisement

Bohmian Mechanics

  • Detlef Dürr
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 574)

Abstract

This is a short review of Bohmian Mechanics with special emphasis on the role of probability within this deterministic quantum theory without observers. I discuss the equations of motion and the statistical mechanics of this theory.

Keywords

Wave Function Newtonian Mechanic Bohmian Mechanic Newtonian Limit Bohmian Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bell: Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge 1987)Google Scholar
  2. 2.
    S. Goldstein: Physics Today, 51, 3, pp. 42–47 and 4, pp. 38-42 (1998)CrossRefGoogle Scholar
  3. 3.
    D. Dürr, S. Goldstein, N. Zanghí: Journal of Stat. Phys. 67, pp. 843–907 (1992)zbMATHCrossRefADSGoogle Scholar
  4. 4.
    D. Bohm: Phys. Rev. 85 pp. 166–193 (1952)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    D. Bohm and B. Hiley: The Undivided Universe (Routledge, London and New York 1993)Google Scholar
  6. 6.
    J. Baggott: The Meaning of Quantum Theory (Oxford Science Publication, Oxford 1992)Google Scholar
  7. 7.
    E. Nelson: Quantum Fluctuations (Princeton University Press, Princeton 1985)zbMATHGoogle Scholar
  8. 8.
    J.A. Wheeler, R.P. Feynman: Rev. Mod. Pys. 17, 157 (1945), Rev. Mod. Phys. 21, 425 (1949)CrossRefADSGoogle Scholar
  9. 9.
    D. Dürr, S. Goldstein, N. Zanghí: ‘Bohmian Mechanics as the Foundation of Quantum Mechanics’, in Bohmian Mechanics and Quantum Theory: An Appraisal, ed. by J. Cushing, A. Fine, S. Goldstein (Kluwer Academic Publishers, Dordrecht 1986)Google Scholar
  10. 10.
    T. Maudlin: In Bohmian Mechanics and Quantum Theory: An Appraisal, ed. by J. Cushing, A. Fine, S. Goldstein (Kluwer Academic Publishers, Dordrecht 1986)Google Scholar
  11. 11.
    D. Dürr, S. Goldstein, S. Teufel, N. Zanghí: Physica A 279, pp. 416–431 (2000)CrossRefGoogle Scholar
  12. 12.
    D. Dürr, S. Goldstein, N. Zanghí: ‘Bohmian Mechanics, Identical Particles, Anyons and Parastatistics’, in preparationGoogle Scholar
  13. 13.
    D. Dürr, S. Goldstein, K. Münch-Berndl, N. Zanghí: Phys. Rev. A 60, pp. 2729–2736 (1999)CrossRefADSGoogle Scholar
  14. 14.
    V. Allori, D. Dürr, S. Goldstein, S. Teufel, N. Zanghí: ‘Bohmian Mechanics and the Classical Limit of Quantum Mechanics’, in preparationGoogle Scholar
  15. 15.
    M. Smoluchowski: Die Naturwissenschaften, 17, pp. 253–263 (1918), see also M. Kac: Probability and Related Topics in Physical Sciences, Lectures in Applied Mathematics, American Mathematical Society (1991)CrossRefGoogle Scholar
  16. 16.
    J. Cushing: Quantum Mechanics (The University of Chicago Press, Chicago 1994)zbMATHGoogle Scholar
  17. 17.
    D. Dürr, S. Goldstein, N. Zanghí: ‘On the Role of Operators in Bohmian Mechanics’, in preparationGoogle Scholar
  18. 18.
    D. Dürr: Bohmsche Mechanik als Grundlage der Quantenmechanik, to be published by SpringerGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Detlef Dürr
    • 1
  1. 1.Mathematisches InstitutUniversität MünchenMünchenGermany

Personalised recommendations