Advertisement

Probability in Orthodox Quantum Mechanics: Probability as a Postulate Versus Probability as an Emergent Phenomenon

  • Stephen L. Adler
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 574)

Abstract

The role of probability in quantum mechanics is reviewed, with a discussion of the “orthodox” versus the statistical interpretative frameworks, and of a number of related issues. After a brief summary of sources of unease with quantum mechanics, a survey is given of attempts either to give a new interpretive framework assuming quantum mechanics is exact, or to modify quantum mechanics assuming it is a very accurate approximation to a more fundamental theory. This survey focuses particularly on the issue of whether probabilites in quantum mechanics are postulated or emergent.

Keywords

Density Matrix Pure State Unitary Evolution Bohmian Mechanic Coherent Superposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Home: Conceptual Foundations of Quantum Mechanics, Chapt. 8 (Plenum, New York 1997)Google Scholar
  2. 2.
    L. E. Ballentine, Rev. Mod. Phys. 42, 358 (1970)zbMATHCrossRefADSGoogle Scholar
  3. 3.
    R. Penrose: The Emperor’s New Mind (Oxford University Press, New York 1989)Google Scholar
  4. 4.
    F. Mandl: Quantum Mechanics, 2nd. edn., Chapt. 4, Sec. 16, pp. 69–70 (Buttersworth, London 1957)Google Scholar
  5. 5.
    A. J. Leggett, Suppl. Prog. Theor. Phys. 69, 80 (1980)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Everett, III, Rev. Mod. Phys. 29, 454 (1957)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    B. S. DeWitt and N. Graham: The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton 1973)Google Scholar
  8. 8.
    R. Omnès, Rev. Mod. Phys. 64, 339 (1992)CrossRefADSGoogle Scholar
  9. 9.
    R. B. Griffiths and R. Omnès, Physics Today 52, No. 8, Part 1, 26 (1999)CrossRefGoogle Scholar
  10. 10.
    D. Dürr, S. Goldstein, and N. Zanghí, J. Stat. Phys. 67, 843 (1992)zbMATHCrossRefADSGoogle Scholar
  11. 11.
    S. Goldstein, Physics Today 51, No. 3, 42 (1998) 51, No. 4, 38 (1998)CrossRefGoogle Scholar
  12. 12.
    J. Ax and S. Kochen, ‘Extension of Quantum Mechanics to Individual Systems’, quant-ph/9905077Google Scholar
  13. 13.
    C. W. Gardiner: Handbook of Stochastic Methods, Chapt. 4 (Springer, Berlin 1990)zbMATHGoogle Scholar
  14. 14.
    L. P. Hughston, Proc. Roy. Soc. Lond. A 452, 953 (1996)zbMATHADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    S. L. Adler and L. P. Horwitz, ‘Structure and Properties of Hughston’s Stochastic Extension of the Schrödinger Equation’, quant-ph/9909026Google Scholar
  16. 16.
    G’ t Hooft, J. Stat. Phys. 53, 323 (1988) ‘Quantum Gravity as a Dissipative Deterministic System’, gr-qc/9903084 ‘Determinism and Dissipation in Quantum Gravity’, hep-th/0003005CrossRefADSGoogle Scholar
  17. 17.
    S. L. Adler, Nucl. Phys. B 415, 195 (1994) S. L. Adler and A. C. Millard, Nucl. Phys. B 473, 199 (1996) S. L. Adler and A. Kempf, J. Math. Phys. 39, 5083 (1998)zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Stephen L. Adler
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations