The Direction of Time

  • Oliver Penrose
Part of the Lecture Notes in Physics book series (LNP, volume 574)


It is argued, using a relativistic space-time view of the Universe, that Reichenbach’s “principle of the common cause” provides a good basis for understanding the time direction of a variety of time-asymmetric physical processes. Most of the mathematical formulation is based on a probabilistic model using classical mechanics, but the extension to quantumm echanics is also considered.


Black Hole Time Reversal Time Direction Markovian Condition Bohmian Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Bell: ‘The theory of local beables’, Speakable and unspeakable in quantum mechanics (Cambridge University Press 1987), pp 52–62Google Scholar
  2. 2.
    D. Bohm: ‘A Suggested Interpretation of the Quantum Theory in terms of “Hidden Variables”’, Phys. Rev. 85 166–179 and 180-193 (1952)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    L. Boltzmann: Vorlesungen über Gastheorie (J. A. Barth, Leipzig, 1896 and 1898), section 5. English translation by S. G. Brush, Lectures on gas theory (University of California Press, Berkeley and Los Angeles, 1964)zbMATHGoogle Scholar
  4. 4.
    L. Boltzmann: ibid., section 87. English translation by Michael Kiessling (private communication, 2000)Google Scholar
  5. 5.
    L. Boltzmann: ibid., section 89. English translation by S. G. Brush, loc. cit.Google Scholar
  6. 6.
    D. Dürr, S. Goldstein and N. Zanghi: ‘QuantumEquilibriumand the Origin of Absolute Uncertainty’, J. Stat. Phys. 67 843–907 (1992)zbMATHCrossRefADSGoogle Scholar
  7. 7.
    A. Einstein, P. Podolsky and N. Rosen: ‘Can Quantum-mechanical Description of Reality be Considered Complete?’, Phys. Rev. 47, 777–780 (1935)zbMATHCrossRefADSGoogle Scholar
  8. 8.
    R. Haag: ‘Fundamental irreversibility and the concept of events’, Commun. Math. Phys.132, 245–251 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    O. Lanford III: ‘Time Evolution of Large Classical Systems’. In: Dynamical Systems: Theory and Applications: Battelle Seattle Rencontres 1974, ed. by J. Moser (Springer Lecture Notes in Physics 38, 1975) pp.1–111Google Scholar
  10. 10.
    J. L. Lebowitz and H. Spohn: ‘Microscopic Basis for Fick’s Law of Self-diffusion’, J. Stat. Phys. 28 539–556 (1982)zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    J. L. Lebowitz and H. Spohn: ‘On the Time Evolution of Macroscopic Systems’, Commun. Pure Appl. Math. 36 595–613 (1983)CrossRefMathSciNetGoogle Scholar
  12. 12.
    J. L. Lebowitz: ‘Boltzmann’s Entropy and Time’s Arrow’, Physics today 46:9 32–38 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. L. Lebowitz: ‘Statistical Mechanics: A Selective Review of Two Central Issues’, Rev. Mod. Phys. 71, S346–357 (1999)CrossRefGoogle Scholar
  14. 14.
    O. Penrose: Foundations of statistical mechanics (Pergamon, Oxford, 1970)zbMATHGoogle Scholar
  15. 15.
    O. Penrose: ‘Quantum Mechanics and Real Events’. In: Quantum Chaos—Quantum Measurements, ed. P. Cvitanović et al. (Kluwer, Netherlands 1992) pp 257–264Google Scholar
  16. 16.
    O. Penrose: ‘The “Game of Everything”’. Markov Processes and Related Fields 2, 167–182 (1996)zbMATHMathSciNetGoogle Scholar
  17. 17.
    O. Penrose and I. C. Percival: ‘The Direction of Time’, Proc. Phys. Soc. 79, 605–616 (1962)Google Scholar
  18. 18.
    R. Penrose: The Emperor’s New Mind (Oxford University Press, Oxford 1989), chapter 7Google Scholar
  19. 19.
    H. Reichenbach: The Direction of Time (University of California Press, Berkeley 1956), especially section 19.Google Scholar
  20. 20.
    L. S. Schulman: Opposite Thermodynamic Arrows of Time, Phys. Rev. Letters 83 5419–5422 (1999)zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    D. W. Sciama: Modern Cosmology and the Dark Matter Problem (Cambridge University Press, Cambridge 1993), section 3.2Google Scholar
  22. 22.
    G. Sewell: private communication (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Oliver Penrose
    • 1
  1. 1.Heriot-Watt UniversityEdinburghUK

Personalised recommendations