Skip to main content

The Direction of Time

  • Chapter
  • First Online:
Chance in Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 574))

Abstract

It is argued, using a relativistic space-time view of the Universe, that Reichenbach’s “principle of the common cause” provides a good basis for understanding the time direction of a variety of time-asymmetric physical processes. Most of the mathematical formulation is based on a probabilistic model using classical mechanics, but the extension to quantumm echanics is also considered.

This paper is dedicated to the memory of Dennis Sciama (1926-1999), the sadly missed friend who taught me so much about cosmology, the foundations of physics, and scientific writing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Bell: ‘The theory of local beables’, Speakable and unspeakable in quantum mechanics (Cambridge University Press 1987), pp 52–62

    Google Scholar 

  2. D. Bohm: ‘A Suggested Interpretation of the Quantum Theory in terms of “Hidden Variables”’, Phys. Rev. 85 166–179 and 180-193 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  3. L. Boltzmann: Vorlesungen über Gastheorie (J. A. Barth, Leipzig, 1896 and 1898), section 5. English translation by S. G. Brush, Lectures on gas theory (University of California Press, Berkeley and Los Angeles, 1964)

    MATH  Google Scholar 

  4. L. Boltzmann: ibid., section 87. English translation by Michael Kiessling (private communication, 2000)

    Google Scholar 

  5. L. Boltzmann: ibid., section 89. English translation by S. G. Brush, loc. cit.

    Google Scholar 

  6. D. Dürr, S. Goldstein and N. Zanghi: ‘QuantumEquilibriumand the Origin of Absolute Uncertainty’, J. Stat. Phys. 67 843–907 (1992)

    Article  MATH  ADS  Google Scholar 

  7. A. Einstein, P. Podolsky and N. Rosen: ‘Can Quantum-mechanical Description of Reality be Considered Complete?’, Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  8. R. Haag: ‘Fundamental irreversibility and the concept of events’, Commun. Math. Phys.132, 245–251 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. O. Lanford III: ‘Time Evolution of Large Classical Systems’. In: Dynamical Systems: Theory and Applications: Battelle Seattle Rencontres 1974, ed. by J. Moser (Springer Lecture Notes in Physics 38, 1975) pp.1–111

    Google Scholar 

  10. J. L. Lebowitz and H. Spohn: ‘Microscopic Basis for Fick’s Law of Self-diffusion’, J. Stat. Phys. 28 539–556 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. J. L. Lebowitz and H. Spohn: ‘On the Time Evolution of Macroscopic Systems’, Commun. Pure Appl. Math. 36 595–613 (1983)

    Article  MathSciNet  Google Scholar 

  12. J. L. Lebowitz: ‘Boltzmann’s Entropy and Time’s Arrow’, Physics today 46:9 32–38 (1993)

    Article  MathSciNet  Google Scholar 

  13. J. L. Lebowitz: ‘Statistical Mechanics: A Selective Review of Two Central Issues’, Rev. Mod. Phys. 71, S346–357 (1999)

    Article  Google Scholar 

  14. O. Penrose: Foundations of statistical mechanics (Pergamon, Oxford, 1970)

    MATH  Google Scholar 

  15. O. Penrose: ‘Quantum Mechanics and Real Events’. In: Quantum Chaos—Quantum Measurements, ed. P. Cvitanović et al. (Kluwer, Netherlands 1992) pp 257–264

    Google Scholar 

  16. O. Penrose: ‘The “Game of Everything”’. Markov Processes and Related Fields 2, 167–182 (1996)

    MATH  MathSciNet  Google Scholar 

  17. O. Penrose and I. C. Percival: ‘The Direction of Time’, Proc. Phys. Soc. 79, 605–616 (1962)

    Google Scholar 

  18. R. Penrose: The Emperor’s New Mind (Oxford University Press, Oxford 1989), chapter 7

    Google Scholar 

  19. H. Reichenbach: The Direction of Time (University of California Press, Berkeley 1956), especially section 19.

    Google Scholar 

  20. L. S. Schulman: Opposite Thermodynamic Arrows of Time, Phys. Rev. Letters 83 5419–5422 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. D. W. Sciama: Modern Cosmology and the Dark Matter Problem (Cambridge University Press, Cambridge 1993), section 3.2

    Google Scholar 

  22. G. Sewell: private communication (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Penrose, O. (2001). The Direction of Time. In: Bricmont, J., Ghirardi, G., Dürr, D., Petruccione, F., Galavotti, M.C., Zanghi, N. (eds) Chance in Physics. Lecture Notes in Physics, vol 574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44966-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-44966-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42056-9

  • Online ISBN: 978-3-540-44966-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics