Einstein’s Nonconventional Conception of the Photon and the Modern Theory of Dynamical Systems

  • Andrea Carati
  • Luigi Galgani
Part of the Lecture Notes in Physics book series (LNP, volume 574)


Everyone knows how Einstein introduced in the year 1905 the concept of the photon, by giving some conctreteness to the discretization of energy previously introduced by Planck at a formal level. Here we point out how, till the end of his life, Einstein considered such a conception just a “provisional way out”, to be substituted by a conception involving continuous variations of energy. We explain how such a conception is understood by taking into account Einstein’s contribution to the first Solvay conference. Finally we show how such a conception can be at least partially implemented in classical mechanics, through results from the modern theory of dynamical systems.


Classical Mechanic Modern Theory Heat Reservoir Classical Statistical Mechanic Dynamical Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.S. Kuhn, Black-Body theory and the quantum discontinuity, 1894-1912, (Oxford U.P., Oxford, 1978); J.M. Klein, Max Planck and the beginning of quantum theory, Arch. Hist. Exact Sc. 1, 459-479 (1962).Google Scholar
  2. 2.
    A. Carati and L. Galgani, Analog of Planck’s formula and effective temperature in classical statistical mechanics far from equilibrium, Phys. Rev. E, 61, (2000) 4791.CrossRefADSGoogle Scholar
  3. 3.
    A. Einstein, Scientific autobiography, in P.A. Schilpp, Albert Einstein: philosopher-scientist, (Tudor P.C., New York, 1949).Google Scholar
  4. 4.
    A. Einstein, Phys. Zeits. 10 (1909) 185.Google Scholar
  5. 5.
    A. Einstein, Contribution to the 1911 Solvay Conference, in The collected papers of A. Einstein, (Princeton U.P., Princeton, 1993), Vol. 3, n. 26.Google Scholar
  6. 6.
    M. Planck, Verh. D. Phys. Ges. 2 (1900); reprinted in H. Kangro, Planck’s original papers in quantum physics, (Taylor and Francis, London, 1972).Google Scholar
  7. 7.
    A. Einstein, Ann. Phys. 11 (1903) 170.CrossRefGoogle Scholar
  8. 8.
    L. Galgani and A. Scotti, Phys. Rev. Lett. 28 (1972) 1173.CrossRefADSGoogle Scholar
  9. 9.
    A. Carati, L. Galgani, The theory of dynamical systems and the relations between classical and quantum mechanics, in preparation.Google Scholar
  10. 10.
    E. Fermi, J. Pasta and S. Ulam, Los Alamos Report No. LA-1940 (1955), later published in E. Fermi, Collected Papers, University of Chicago Press (Chicago, 1965), and Lect. Appl. Math. 15(1974) 143.Google Scholar
  11. 11.
    F.M. Izrailev and B.V. Chirikov, Sov. Phys. Dokl. 11 (1966) 30.ADSGoogle Scholar
  12. 12.
    P. Bocchieri, A. Scotti, B. Bearzi and A. Loinger, Phys. Rev. A 2 (1970) 2013.CrossRefADSGoogle Scholar
  13. 13.
    G. Benettin, L. Galgani and A. Giorgilli, Nature 311 (1984) 444.CrossRefADSGoogle Scholar
  14. 14.
    G. Benettin, L. Galgani and A. Giorgilli, Phys. Lett. A 120 (1987) 23.CrossRefADSGoogle Scholar
  15. 15.
    G. Benettin, L. Galgani and A. Giorgilli, Comm. Math. Phys. 121 (1989) 557.zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    H. Poincaré, Revue Générale des Sciences Pures et Appliquées, 5 (1894) 513–521, in Oeuvres X, 246-263.Google Scholar
  17. 17.
    O. Baldan and G. Benettin, J. Stat. Phys. 62 (1991) 201; G. Benettin, A. Carati and P. Sempio, J. Stat. Phys. 73 (1993) 175.CrossRefADSGoogle Scholar
  18. 18.
    G. Benettin, A. Carati and G. Gallavotti, Nonlinearity 10 (1997) 479.zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    L. Galgani and A. Scotti, Recent progress in classical nonlinear dynamics, Rivista Nuovo Cim. 2 (1972) 189.MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    C. Cercignani, L. Galgani and A. Scotti, Phys. Lett. A38 (1972) 403.ADSGoogle Scholar
  21. 21.
    A. Carati and L. Galgani, J. Stat. Phys. 94 (1999) 859.zbMATHCrossRefGoogle Scholar
  22. 22.
    L. Galgani, Relaxation Times and the Foundations of Classical Statistical Mechanics in the Light of Modern Perturbation Theory, in G. Gallavotti and P.F. Zweifel eds., Non-Linear Evolution and Chaotic Phenomena, NATO ASI Series R71B: Vol. 176, (Plenum Press, New York, 1988).Google Scholar
  23. 23.
    L. Galgani, Annales de la Fondation Louis de Broglie, 8 (1983) 19.Google Scholar
  24. 24.
    L. Crovini and L. Galgani, Lett. Nuovo Cimento, 39 (1984) 210.ADSCrossRefGoogle Scholar
  25. 26.
    P.P. Ewald, Bericht über die Tagung der British Association in Birmingham (10 bis 17 September), Phys. Zeits. 14, 1297 (1913); see especially page 1298.Google Scholar
  26. 27.
    H. Poincaré, J. Phys. Théor. Appl. 5, 5–34 (1912), in Oeuvres IX, 626-653.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andrea Carati
    • 1
  • Luigi Galgani
    • 1
  1. 1.Dipartimento di MatematicaUniversitá di MilanoMilanoItaly

Personalised recommendations