Time-Scales for the Approach to Thermal Equilibrium

  • Stefano Ruffo
Part of the Lecture Notes in Physics book series (LNP, volume 574)


The approach to equilibrium of an isolated system constitutes the basic principle of thermodynamics. Fermi, Pasta and Ulam (FPU) studied numerically this process for a chain of coupled oscillators. The FPU “experiment” has been an amazingly rich source of problems in modern dynamical system theory and has played in this context a role analogue to the Ising model for statistical mechanics. Recent results have shown the presence of increasingly long time-scales of the relaxation process as the energy is lowered. States which were previously classified as “frozen” have been instead discovered to “diffuse” very slowly to the equipartition state. The dependence of the diffusive time-scale TD on energy E and number of degrees of freedom N has been found both analytically and numerically for some classes of initial conditions. For “thermodynamical” initial states TD is found to scale at small E with an inverse power-law of E = E/N.


Lyapunov Exponent Thermodynamic Limit Primary Resonance Critical Energy Density Energy Equipartition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fermi, J. Pasta, and S. Ulam, Los Alamos Report LA-1940 (1955), later published in Collected Papers of Enrico Fermi, E. Segré ed., University of Chicago Press, Chicago (1965) (Vol. II, p. 978); also reprinted in Nonlinear Wave Motion, A. C. Newell ed., Lect. Appl. Math. 15, AMS, Providence, Rhode Island (1974); also in The Many-Body Problem, D. C. Mattis ed., World Scientific, Singapore (1993).Google Scholar
  2. 2.
    D. Escande, H. Kantz, R. Livi and S. Ruffo, J. Stat. Phys., 76, 605 (1994).zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    F. M. Izrailev and B. V. Chirikov, Dokl. Akad. Nauk SSSR 166 (1966) 57 [Sov. Phys. Dokl. 11 (1966) 30].Google Scholar
  4. 4.
    G. Benettin, Ordered and Chaotic Motions in Dynamical Systems with Many Degrees of Freedom, in Molecular Dynamics Simulation of Statistical Mechanical Systems, Varenna XCVII Course, G. Ciccotti and W. G. Hoover eds., North-Holland, Amsterdam (1986).Google Scholar
  5. 5.
    R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, and A. Vulpiani, Phys. Rev. A 31 (1985) 1039; R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani, Phys. Rev. A 31 (1985) 2740.CrossRefADSGoogle Scholar
  6. 6.
    M. Pettini and M. Landol., Phys. Rev. A 41 (1990) 768.CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    J. L. Tuck, Los Alamos Report LA-3990 (1968); J. L. Tuck and M. T. Menzel, Adv. Math. 9 (1972) 399.Google Scholar
  8. 8.
    H. Kantz, Physica D 39 (1989) 322.CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    L. Galgani, A. Giorgilli, A. Martinoli, and S. Vanzini, Physica D 59 (1992) 334.zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    J. De Luca, A. J. Lichtenberg, and M. A. Lieberman, Chaos 5 (1995) 283.CrossRefADSGoogle Scholar
  11. 11.
    J. De Luca, A. J. Lichtenberg, and S. Ruffo, Phys. Rev. E 60 (1999) 3781.CrossRefADSGoogle Scholar
  12. 12.
    H. Kantz, R. Livi and S. Ruffo, J. Stat. Phys. 76 (1994) 627.CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    D. L. Shepelyansky, Nonlinearity 10 (1997) 1331.zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    F. Fucito, F. Marchesoni, E. Marinari, G. Parisi, L. Peliti, S. Ruffo, and A. Vulpiani, J. de Physique 43 (1982) 707; R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, and A. Vulpiani, Phys. Rev. A 28 (1983) 3544.MathSciNetCrossRefGoogle Scholar
  15. 15.
    P. Poggi, S. Ruffo, and H. Kantz, Phys. Rev. E 52 (1995) 307.CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    C.D. Levermore and J-G Liu, Physica D 99 (1996) 191.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    G. Benenti, G. Casati and I. Guarneri, Chaotic dynamics of a classical radiant cavity, preprint (1998).Google Scholar
  18. 18.
    L. Casetti, M. Cerruti-Sola, M. Pettini and E.G.D. Cohen, Phys. Rev. E, 55 (1997) 6566CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    T. Dauxois, S. Ruffo, A. Torcini and T. Cretegny, Physica D, 121 (1998) 109.CrossRefADSGoogle Scholar
  20. 20.
    Yu. A. Kosevich, S. Lepri, Phys. Rev. B, 61 (2000) 299.CrossRefADSGoogle Scholar
  21. 21.
    K. Ullmann, A.J. Lichtenberg and G. Corso, Phys. Rev. E, 61 (2000) 2471.CrossRefADSGoogle Scholar
  22. 22.
    K.O. Rasmussen, S. Aubry, A.R. Bishop and G.P. Tsironis, Discrete nonlinear Schroedinger breathers in a phonon bath, cond-mat/9901002.Google Scholar
  23. 23.
    S. Lepri, Phys. Rev. E, 58 (1998) 7165.CrossRefADSGoogle Scholar
  24. 24.
    L.F. Cugliandolo, J. Kurchan and L. Peliti, Phys. Rev. E, 55 (1997) 3898.CrossRefADSGoogle Scholar
  25. 25.
    A. Carati and L. Galgani, On the specific heat of Fermi-Pasta-Ulam systems, preprint (1999).Google Scholar
  26. 26.
    V. Latora, A. Rapisarda and S. Ruffo, Physica D, 131 (1999) 38.zbMATHCrossRefADSGoogle Scholar
  27. 27.
    D. Lynden-Bell, Negative specific heat in astronomy, physics and chemistry, condmat/9812172.Google Scholar
  28. 28.
    D.H. Gross, Rep. Progr. Phys., 53 (1990) 605.CrossRefADSGoogle Scholar
  29. 29.
    M. Schmidt et al., Phys. Rev. Lett., 79 (1997) 99.CrossRefADSGoogle Scholar
  30. 30.
    S. McNamara and W.R. Young, Phys. Rev. E, 53 (1996) 5089.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Stefano Ruffo
    • 1
  1. 1.Dipartimento di Energetica “S. Stecco”Università di FirenzeFirenzeItaly

Personalised recommendations