Classical Versus Quantum Probabilities

  • Enrico G. Beltrametti
Part of the Lecture Notes in Physics book series (LNP, volume 574)


Some features that accompany the branching between classical and quantum probabilities are reviewed. We first review some aspects of the so called logical approach in which the states are viewed as probability measures on ordered structures, the latter being Boolean algebras in the classical case and nondistributive orthomodular lattices in the quantum case. The problem of providing intrinsic characterizations of classical and of quantum probabilities is also summarized. Generalizations of the usual classical probability framework that are able to host typical features of quantum probabilities are discussed: we consider in particular an approach which rests on a generalization of the usual notion of random variables.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Accardi, A. Frigerio, J.T. Lewis, Quantum Stochastic Processes, Publ. RIMS, Kyoto Univ. 18, 97 (1992)MathSciNetGoogle Scholar
  2. 2.
    E.G. Beltrametti and G. Cassinelli, The Logic of Quantum Mechanics (Addison-Wesley, Reading 1981)zbMATHGoogle Scholar
  3. 3.
    G. Birkhoff and J. von Neumann, Ann. Math. 37, 823 (1936)CrossRefGoogle Scholar
  4. 4.
    G.W. Mackey, Mathematical Foundations of Quantum Mechanics (Benjamin, Reading 1963)zbMATHGoogle Scholar
  5. 5.
    V.S. Varadarajan, Geometry of Quantum Theory (Springer, New York 1985)zbMATHGoogle Scholar
  6. 6.
    F. Maeda and S. Maeda, Theory of Symmetric Lattices (Springer, New York 1970)zbMATHGoogle Scholar
  7. 7.
    C. Piron, Foundations of Quantum Physics (Benjamin, Reading 1976)zbMATHGoogle Scholar
  8. 8.
    H. Keller, Math. Z. 172, 41 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M.P. Soler, Comm. in Algebra 23, 219 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Boole, Phil. Trans. R. Soc. London 152, 225 (1862)CrossRefGoogle Scholar
  11. 11.
    L. Accardi, “The probabilistic roots of the quantum mechanical paradoxes” in The Wave-Particle Dualism ed. by S. Diner, G. Lochat and F. Selleri (North-Holland, Amsterdam 1976)Google Scholar
  12. 12.
    S. Gudder and N. Zanghi, Nuovo Cimento 79 B, 291 (1984)MathSciNetADSGoogle Scholar
  13. 13.
    I. Pitowski, Quantum Probability-Quantum Logic, Lect. Notes in Phys. 321, (Springer, Berlin 1989)Google Scholar
  14. 14.
    E.G. Beltrametti and M. Maczynski, Found. of Phys. 24, 1153 (1994)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    E.G. Beltrametti and M. Maczynski, J. Math. Phys. 34, 4919 (1993)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    E.G. Beltrametti, S. Bugajski, J. Phys. A: Math. Gen. 28, 3329 (1995)zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    E.G. Beltrametti, S. Bugajski, Int. J. Theor. Phys. 34, 1221 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    E.B. Davies, J.T. Lewis, Comm. Math. Phys. 17, 239 (1970)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    S. Bugajski, Int. J. Theor. Phys. 35, 2229 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    S. Gudder, Demonstratio Mathematica 31, 235 (1998)zbMATHMathSciNetGoogle Scholar
  21. 21.
    E.G. Beltrametti, S. Bugajski, J. Math. Phys. 38, 3020 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    E. G. Beltrametti, S. Bugajski, J. Phys. A: Math. Gen. 29, 247 (1996)zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    P. Busch, M. Grabowski, P. J. Lahti, Operational Quantum Physics, (Springer-Verlag, Berlin 1995)zbMATHGoogle Scholar
  24. 24.
    R. Haag and U. Bannier, Comm. Math. Phys. 60, 1 (1978)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    S. Bugajski, Int. J. Theor. Phys. 30, 961 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Enrico G. Beltrametti
    • 1
  1. 1.Department of PhysicsUniversity of Genoa and Istituto Nazionale di Fisica NucleareGenovaItaly

Personalised recommendations