Advertisement

Probabilistic Results for Six Detectors in a Three-Particle GHZ Experiment

  • José Acacio de Barros
  • Patrick Suppes
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 574)

Abstract

In this paper we show that the GHZ theorem can be reformulated as a probablistic theorem allowing for inefficiencies in the detectors. We show quantitatively that taking into account these inefficiencies, the published results of the Innsbruck experiment support the nonexistence of a joint probability distribution for the six correlated spin variables, and hence the nonexistence of hidden variables that explain the experimental results.

Keywords

Entangle State Hide Variable Joint Probability Distribution Quantum Mechanical Prediction Double Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, B. Podolski, N. Rosen: Phys. Rev. 47, 777 (1935)zbMATHCrossRefADSGoogle Scholar
  2. 2.
    J. S. Bell: Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987)Google Scholar
  3. 3.
    A. Aspect, J. Dalibard, and G. Roger: Phys. Rev. Lett. 49, 1804 (1982)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    D. M. Greenberger, M. Horne, and A. Zeillinger: ‘Going Beyond Bell’s Theorem’. In: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, ed. by M. Kafatos (Kluwer, Dordrecht, 1989) pp. 69–72Google Scholar
  5. 5.
    N. D. Mermin: Phys. Rev. Lett. 65, 1838 (1990).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    J. Acacio de Barros and P. Suppes: ‘Some conceptual issues involving probabilities in quantum mechanics’. To appear in: Reverberations of a Shaky Game, ed. by Roger Jones and Philip Ehrlich, quant-ph/0001017.Google Scholar
  7. 7.
    J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt: Phys. Rev. Lett. 23, 880 (1969)CrossRefADSGoogle Scholar
  8. 8.
    P. Suppes, J. Acacio de Barros, G. Oas: ‘A Collection of Hidden-variable Theorems and Counterexamples’. In: Waves, Information and Foundations of Physics, ed. by Riccardo Pratesi and Laura Ronchi (Italian Physics Society, Bologna, 1998) pp. 267–292.Google Scholar
  9. 9.
    J. Acacio de Barros, P. Suppes: Phys. Rev. Lett. 84, 793 (2000)CrossRefADSGoogle Scholar
  10. 10.
    D. Bouwmeester, J-W. Pan, M. Daniell, H. Weinfurter, A. Zeilinger: Phys. Rev. Lett. 82, 1345 (1999).zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    P. Suppes, M. Zannoti: Synthese 48, 191 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, A. Zeilinger: Nature 403, 515 (2000)CrossRefADSGoogle Scholar
  13. 13.
    A. Garg, N. D. Mermin: Phys. Rev. Lett. 49, 1220 (1982)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • José Acacio de Barros
    • 1
    • 2
  • Patrick Suppes
    • 1
  1. 1.CSLI—Stanford UniversityStanfordUSA
  2. 2.Dep. de Física—ICEUFJFJuiz de Fora, MGBrazil

Personalised recommendations