Advertisement

Relativistic Theory of Continuous Measurements

  • Heinz-Peter Breuer
  • Francesco Petruccione
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 574)

Abstract

It is shown that the stochastic wave function representation of continuous, selective measurements of open quantum systems can be given a relativistically covariant form. As an example, a piecewise deterministic process for the state vector of the source of an optical cavity is constructed which is covariant under Lorentz transformations and which describes the stochastic dynamics induced by a continuous monitoring of the radiated photons through a moving detector. The most general case of a quantum dynamical semigroup generated by an arbitrary number of Lindblad operators is also treated. The resulting equation of motion clearly demonstrates that the stochastic formulation of open quantum systems can be generalized to meet the basic postulates of both quantum measurement theory and special relativity.

Keywords

Density Matrix Transport Equation Dirac Equation Rest Frame Lorentz Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. Braginsky, F. Ya. Khalili: Quantum measurement (Cambridge University Press, Cambridge 1992)zbMATHCrossRefGoogle Scholar
  2. 2.
    M. O. Scully and M. S. Zubairy: Quantum Optics (Cambridge University Press, Cambridge 1997)Google Scholar
  3. 3.
    H. M. Wiseman and G. Milburn: Phys. Rev. A47, 642 (1993); Phys. Rev. A47, 1652 (1993)ADSGoogle Scholar
  4. 4.
    H. P. Breuer and F. Petruccione: Fortschr. Phys. 45, 39 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Dalibard, Y. Castin and K. Molmer: Phys. Rev. Lett. 68, 580 (1992)CrossRefADSGoogle Scholar
  6. 6.
    R. Dum, P. Zoller and H. Ritsch: Phys. Rev. A45, 4879 (1992)ADSGoogle Scholar
  7. 7.
    H. Carmichael: An Open Systems Approach to Quantum Optics (Springer, Berlin 1993)zbMATHGoogle Scholar
  8. 8.
    H. P. Breuer and F. Petruccione: Phys. Rev. Lett. 74, 3788 (1995)CrossRefADSGoogle Scholar
  9. 9.
    Y. Castin, K. Molmer: Phys. Rev. Lett. 74, 3772 (1995)CrossRefADSGoogle Scholar
  10. 10.
    F. B. de Jong, R. J. C. Spreeuw, H. B. van Linden van den Heuvell: Phys. Rev. A55, 3918 (1997)ADSGoogle Scholar
  11. 11.
    B. Wolfseder and W. Domcke: Chem Phys. Lett. 235, 370 (1995)CrossRefADSGoogle Scholar
  12. 12.
    A. Imamoglu, Y. Yamamoto: Phys. Lett. A191, 425 (1994) A. Imamoglu: Phys. Rev. A50, 3650 (1994)ADSGoogle Scholar
  13. 13.
    H. P. Breuer, B. Kappler, F. Petruccione: Phys. Rev. A56, 2334 (1997)ADSGoogle Scholar
  14. 14.
    H. P. Breuer, B. Kappler, F. Petruccione: Phys. Rev. A59, 1633 (1999)ADSGoogle Scholar
  15. 15.
    J. D. Bjorken and S. D. Drell: Relativistic Quantum Mechanics (McGraw-Hill, New York 1964)Google Scholar
  16. 16.
    H. P. Breuer and F. Petruccione: J. Phys. A: Math. Gen. 31, 33 (1998)zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    S. S. Schweber: An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Company, New York 1961)Google Scholar
  18. 18.
    Y. Aharonov, D. Z. Albert: Phys. Rev. D29, 228 (1984)ADSMathSciNetGoogle Scholar
  19. 19.
    G. C. Ghirardi, R. Grassi, and P. Pearle: Foundations of Physics 20, 1271 (1990)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    C. W. Misner, K. S. Thorne, J. A. Wheeler: Gravitation (Freeman, San Francisco 1973)Google Scholar
  21. 21.
    C. W. Gardiner: Quantum Noise (Springer, Berlin 1991)zbMATHGoogle Scholar
  22. 22.
    H. P. Breuer and F. Petruccione: ‘Stochastic Unraveling of Relativistic Quantum Measurements’. In: Open Systems and Measurement in Relativistic Quantum Theory, Proceedings of the Workshop Held at the Istituto Italiano per gli Studi Filosofici, Naples, 1998, ed. by H. P. Breuer, F. Petruccione (Springer, Berlin 1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Heinz-Peter Breuer
    • 1
  • Francesco Petruccione
    • 1
    • 2
  1. 1.Fakultät für PhysikAlbert-Ludwigs-Universität FreiburgFreiburg i. Br.Germany
  2. 2.Istituto Italiano per gli Studi FilosoficiPalazzo Serra di CassanoNapoliItaly

Personalised recommendations