Space Time and Probability

  • Simon W. Saunders
Part of the Lecture Notes in Physics book series (LNP, volume 574)


Within the consistent history formalism we show how non-epistemic probability can enter in Everett’s Interpretation within a relativistic context.


Consistency Condition Prefer Basis Consistent History Epistemic Notion History Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, D. and B. Loewer [1988] ‘Interpreting the Many-Worlds Interpretation’, Synthese 77, 195–213.Google Scholar
  2. 2.
    Dowker, F., and A. Kent [1996] ‘On the Consistent Histories Approach to Quantum Mechanics’, Journal of Statistical Physics 82, 1575–1646Google Scholar
  3. 3.
    Everett III, H. [1957] ‘Relative State Formulation of Quantum Mechanics’, Reviews of Modern Physics 29, 454–62.Google Scholar
  4. 4.
    Gell-Mann, M. and J.B. Hartle [1993] ‘Classical Equations for Quantum Systems’, Physical Review D47, 3345–3382Google Scholar
  5. 5.
    Griffiths, R. [1984] ‘Consistent Histories and the Interpretation of Quantum Mechanics’, Journal of Statistical Physics, 36, 219–72.Google Scholar
  6. 6.
    Halliwell, J. [1998] ‘Decoherent Histories and Hydrodynamical Equations’, Physical Review D 58, 105015Google Scholar
  7. 7.
    Hartle, J. [1989] ‘The Quantum Mechanics of Cosmology’, in Quantum Cosmology and Baby Universes:P roceedings of the 1989 Jerusalem Winter School for Theoretical Physics, ed. S. Coleman, J. Hartle, T. Piran, and S. Weinberg, World Scientific, Singapore, 1991, pp. 65–157.Google Scholar
  8. 8.
    Loewer, B.: [1996] ‘Comment on Lockwood’, British Journal for the Philosophy of Science, 47, 229–32.Google Scholar
  9. 9.
    Maxwell, N. [1985] ‘Are Probabilism and Special Relativity Incompatible?’, Philosophy of Science, 52, 23–43.Google Scholar
  10. 10.
    Omnes, R.: [1988] Journal of Statistical Physics, 53, 933.Google Scholar
  11. 11.
    Pearle, P. [1990] ‘Towards a Relativistic Theory of Statevector Reduction’, in A. Miller, ed., Sixty-Two Years of Uncertainty, Plenum Press, New York, p.193–214.Google Scholar
  12. 12.
    Putnam, H. [1967] ‘Time and Physical Geometry’, Journal of Philosophy, 64, 240–47, reprinted in Philosophical Papers, Vol. 1, Cambridge University Press, Cambridge, 1975, 198-205.Google Scholar
  13. 13.
    Saunders, S. [1993], ‘Decoherence and Evolutionary Adaptation’, Physics Letters A184, 1–5.Google Scholar
  14. 14.
    Saunders, S. [1998] ‘Time, Quantum Mechanics, and Probability’, Synthese, 114, p. 405–44, 1998.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Sperry, R. [1982] ‘Some Effects of Disconnecting the Cerebral Hemispheres’, Science, 217, 1223–26.Google Scholar
  16. 16.
    Stein, H. [1991] ‘On Relativity Theory and the Openness of the Future’, Philosophy of Science, 58, 147–67.Google Scholar
  17. 17.
    Zurek, W. [1994] ‘Preferred States, Predictability, Classicality, and the Environment-Induced Decoherence’, in The Physical Origins of Time Asymmetry, J.J. Halliwell, J. Perez-Mercader and W.H. Zurek, eds., Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Simon W. Saunders
    • 1
  1. 1.Sub-Faculty of PhilosophyUniversity of OxfordOxfordUK

Personalised recommendations