Bayes, Boltzmann and Bohm: Probabilities in Physics

  • Jean Bricmont
Part of the Lecture Notes in Physics book series (LNP, volume 574)


In this introductory essay I shall make some remarks on the role of probabilities in physics, and discuss some concrete examples illustrating Boltzmann’s explanation of approach to equilibrium.


Intrinsic Randomness White Ball Maximum Entropy Principle Bohmian Mechanic Macroscopic Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge 1987)Google Scholar
  2. 2.
    J. Bricmont, Science of chaos, or chaos in science? Physicalia Magazine 17, pp. 159–208 (1995), and in: The flight from science and reason, ed. by P.R. Gross, N. Levitt, and M.W. Lewis; Annals of the New York Academy of Sciences, 775 pp. 131-175 (1996). Available from: Scholar
  3. 3.
    R. T. Cox, Amer. Journal of Phys. 17, pp 1–133 (1946)CrossRefADSGoogle Scholar
  4. 4.
    D. Dürr, S. Goldstein, N. Zanghì, Journal of Stat. Phys. 67, pp. 843–907 (1992)zbMATHCrossRefADSGoogle Scholar
  5. 5.
    D. Dürr, this volume; available from
  6. 6.
    J-P. Eckmann, D. Ruelle, Rev. Mod. Phys. 57, pp. 617–656 (1985).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S. Goldstein, this volume; available from
  8. 8.
    E.T. Jaynes, Papers on Probability, Statistics and Statistical Physics, ed. by R. D. Rosencrantz (Reidel, Dordrecht 1983)Google Scholar
  9. 9.
    E.T. Jaynes, Probability Theory as Extended Logic, available from
  10. 10.
    E.T. Jaynes, E. T., Bayesian Methods: General Background, in: Maximum-Entropy and Bayesian Methods in Applied Statistics, ed. by J. H. Justice, (Cambridge University Press, Cambridge 1986) available from Google Scholar
  11. 11.
    M. Kac, Probability and Related Topics in the Physical Sciences (Interscience Pub., New York 1959)Google Scholar
  12. 12.
    P.S. Laplace, A Philosophical Essay on Probabilities, Transl. by F. W. Truscott and F. L. Emory, (Dover Pub., New York, 1951). Original: Essai philosophique sur les probabilités, (C. Bourgeois, Paris 1986, text of the fifth edition, 1825).zbMATHGoogle Scholar
  13. 13.
    C. J. Thompson, Mathematical Statistical Mechanics, (Princeton University Press, Princeton, 1972)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jean Bricmont
    • 1
  1. 1.Physique ThéoriqueUCLLouvain-la-NeuveBelgium

Personalised recommendations