Skip to main content

The Morphology of Filamentous Fungi

  • Chapter
  • First Online:
History of Modern Biotechnology II

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 70))

Abstract

The morphology of fungi has received attention from both pure and applied scientists. The subject is complicated, because many genes and physiological mechanisms are involved in the development of a particular morphological type: its morphogenesis. The contribution from pure physiologists is growing steadily as more and more details of the transport processes and the kinetics involved in the morphogenesis become known. A short survey of these results is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scheper T, Schügerl K (eds) (1998) Adv Biochem Biotechnol, vol 60, Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Nielsen J, Villadsen J (1994) Bioreaction engineering principles. Plenum Press, New York

    Google Scholar 

  3. Metz B, Kossen NWF, van Suijdam JC (1979) Adv Biochem Eng Biotechnol 1:103

    Google Scholar 

  4. Megee RD, Kinorhita S, Fredrickson AG (1970) Biotechnol Bioeng 12:771

    Article  CAS  Google Scholar 

  5. Paul GC, Thomas CR (1996) Biotechnol Bioeng 51:558

    Article  CAS  Google Scholar 

  6. Bellgardt KH (1998) Process models for production of β-lactam antibiotics. In: Scheper T, Schügerl K (eds) Adv Biochem Biotechnol 60:153

    Google Scholar 

  7. Dion WM, Carilli A, Sermonti G, Chain EB (1954) Rend Ist Super Sanita 17:187

    Google Scholar 

  8. Dion WM, Kaushal R (1959) Sel Sci Pap Ist Super Sanita 2:357

    Google Scholar 

  9. van Suijdam JC, Metz B (1981) Biotechnol Bioeng 23:111

    Article  Google Scholar 

  10. Fiddi C, Trinci APJ (1976) J Gen Microbiol 97:169

    Google Scholar 

  11. Prosser JI, Trinci APJ (1979) J Gen Microbiol 111:153

    CAS  Google Scholar 

  12. Metz B (1976) From pulp to pellet. Dissertation, Delft University of Technology

    Google Scholar 

  13. Metz B, de Bruin EW, van Suijdam JC (1981) Biotechnol Bioeng 23:149

    Article  Google Scholar 

  14. Adams HL, Thomas CR (1987) Biotechnol Bioeng 32:707

    Article  Google Scholar 

  15. Paul GC, Thomas CR (1998) Characterisation of mycelial morphology using image analysis. In: Scheper T, Schügerl K (eds) Adv Biochem Biotechnol 60:1

    Google Scholar 

  16. Paul GC, Kent CA, Thomas CR (1992) Trans I Chem Eng (Part C) 70:13

    CAS  Google Scholar 

  17. Pons MN, Vivier H (1998) Beyond filamentous species. In: Scheper T, Schügerl K (eds) Adv Biochem Biotechnol 60:61

    Google Scholar 

  18. Krabben P, Nielsen J (1998) Modelling the mycelium morphology of penicillium species in submerged cultures. In: Scheper T, Schügerl K (eds) Adv Biochem Biotechnol 60:125

    Google Scholar 

  19. Spohr A, Dam-Mikkelsen C, Carlsen M, Nielsen J, Villadsen J (1998) Biotechnol Bioeng 58:541

    Article  CAS  Google Scholar 

  20. Schügerl K, Gerlach SR, Siedenberg D (1998) Adv Biochem Biotechnol 60:195

    Google Scholar 

  21. Nielsen J, Johansen CL, Villadsen J (1994) J Biotechnol 38:51

    Article  CAS  Google Scholar 

  22. Thiele EW (1939) Ind Eng Chem 31:916

    Article  CAS  Google Scholar 

  23. Rvesbech NP, Jørgensen BB, Brix O (1981) Limnol Oceanogr 26(4):717

    Article  Google Scholar 

  24. Hooijmans CM (1990) Diffusion coupled with bioconversion in immobilized systems. Dissertation, Delft University of Technology

    Google Scholar 

  25. Cronenberg CCH, Ottengraf SPP, van den Heuvel IC, Pottel F, Sziele D, Schügerl K, Bellgardt KH (1994) Bioproc Eng 10:209

    Google Scholar 

  26. Cronenberg CCH (1994) Biochemical engineering on a micro-scale:biofilms investigated with needle type glucose sensors. Dissertation, University of Amsterdam

    Google Scholar 

  27. Gooday GW, Lloyd D, Trinci APJ (1980) 13th Symp Soc Gen Microbiol, p 207

    Google Scholar 

  28. Scott WA, Tatum EL (1970) Proc Nat Acad Sci USA 66:515

    Article  CAS  Google Scholar 

  29. Schlegel HG (1993) General microbiology. Cambridge University Press, Cambridge, p 170

    Google Scholar 

  30. Howard RJ, Aist JR (1980) J Cell Biol 87:55

    Article  CAS  Google Scholar 

  31. Regalado CM, Sleeman BD, Ritz K (1997) Philos Trans R Soc Lond 352:1963

    Article  Google Scholar 

  32. Cabib E, Roberts R, Bowers B (1982) Annu Rev Biochem 51:763

    Article  CAS  Google Scholar 

  33. Drgonová J, Drgon T, Tanaka K, Kollár R, Guang-Chao Chen, Ford RA, Chan CSM, Takai Y, Cabib E (1996) Science 272:277

    Article  Google Scholar 

  34. Kamada Y, Qadota H, Python CP, Anraku Y, Ohya Y, Levin DE (1996) J Biol Chem 271:9193

    Article  CAS  Google Scholar 

  35. Yamochi W, Tanaka K, Nonaka H, Maeda A, Musha T, Takai Y (1994) J Cell Biol 125:1077

    Article  CAS  Google Scholar 

  36. Wessels JGH (1993) Advances in microbial physiology 34:147

    Article  CAS  Google Scholar 

  37. Fredrickson AG, Tsuchia HM (1963) AIChE J 9:459

    Article  CAS  Google Scholar 

  38. Randolph AD (1964) Can J Chem Eng 280

    Google Scholar 

  39. Randolph AD, Larson MA (1971) Theory of particulate processes. Academic Press, New York, p 41

    Google Scholar 

  40. Nielsen J (1993) Biotechn Bioeng 41:715

    Article  CAS  Google Scholar 

  41. Ainsley M, Ward AC, Wright AR (1990) Biotechnol Bioeng 35:820

    Article  Google Scholar 

  42. Bergter F (1978) Z Allg Mikrobiol 18:143

    Article  CAS  Google Scholar 

  43. Trinci APJ (1970) Arch Microbiol 73:353

    Google Scholar 

  44. Trinci APJ [1970] Trans Br Mycol Soc 55:17

    Article  Google Scholar 

  45. Plomley NJB (1959) Aust J Biol Sci 12:53

    Google Scholar 

  46. Caldwell IY, Trinci APJ (1973) Arch Microbiol 88:1

    CAS  Google Scholar 

  47. Emerson S (1950) J Bacteriol 60:221

    CAS  Google Scholar 

  48. Nielsen J, Krabben P (1995) Biotechnol Bioeng 46:588

    Article  CAS  Google Scholar 

  49. Hinze JO (1975) Turbulence. McGraw Hill, New York, p 221

    Google Scholar 

  50. van Suijdam JC (1980) Mycelial pellet suspensions. Dissertation, Delft Univerity of Technology

    Google Scholar 

  51. van Suijdam JC, Metz B (1981) J Ferm Technol 59:329

    Google Scholar 

  52. Ayazi Shamlou P, Makagiansar HY, Ison HY, Lilly MD, Thomas CR (1994) Chem Eng Sci 49:2621

    Article  CAS  Google Scholar 

  53. Yang H, King R, Reichl U, Gilles ED (1992) Biotechnol Bioeng 39:49

    Article  CAS  Google Scholar 

  54. King R (1998) Mathematical modeling of the morphology of streptomyces species. In: Scheper T, Schügerl K (eds) Adv in Biochem Eng Biotechnol 60. Springer, Berlin Heidelberg New York, p 95

    Google Scholar 

  55. May PN (1974) Stability and complexity in model ecosystems. Princeton University Press, Princeton, NJ

    Google Scholar 

  56. Nielsen J (1992) In: Scheper T, Schügerl K (eds) Adv Biochem Eng Biotechnol 46. Springer, Berlin Heidelberg New York, p 187

    Google Scholar 

  57. Topiwala HH (1973) Methods Microbiol 8:35

    Article  Google Scholar 

  58. Popper KR (1946) Lecture, Signific. Congress Bussum, Holland (unpublished)

    Google Scholar 

  59. Wei J (1975) Chemtech Feb:128

    Google Scholar 

  60. Kossen NWF (1993) Scale-up strategy in fermentation. In: Mortensen U, Norman HJ (eds) Proceedings of the International Symposium on Bioreactor Performance, Helsingør

    Google Scholar 

  61. Brock TD, Madigan MT (1991) Biology of microorganisms. Prentice Hall, Englewood Cliffs, NJ, p 18

    Google Scholar 

  62. Nonaka H, Tanaka K, Hirano H, Fujiwara T, Kohno H, Umikawa M, Mino A, Takai Y (1995) EMBO J 4:5931

    Google Scholar 

  63. Brody S, Tatum EL (1966) Proc Nat Acad Sci USA 290

    Google Scholar 

  64. Lettinga G (1973) Agricultural University Wageningen, personal communication

    Google Scholar 

  65. Olsvik E, Tucker KG, Thomas CR, Kristiansen B (1993) Biotechnol Bioeng 42:1046

    Article  CAS  Google Scholar 

  66. Bongenaar JJTM, Kossen NWF, Metz B, Meijboom FW (1973) Biotechnol Bioeng 15:201

    Article  Google Scholar 

  67. Allen DG, Robinson CW (1990) Chem Eng Sci 45:37

    Article  CAS  Google Scholar 

  68. van Ooijen AJJ, Rietveld K, Hoekema A, Pen J, Sijmons PC, Teunis C, Verwoerd TC, Quax WJ (1996) US patent 5, 543, 576

    Google Scholar 

  69. van Ooijen AJJ, Rietveld K, Hoekema A, Pen J, Sijmons PC, Teunis C, Verwoerd TC (1997) US patent 5, 593, 963

    Google Scholar 

  70. Collinge AJ, Trinci APJ (1974) Arch Microbiol 99:353

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kossen, N.W.F. (2000). The Morphology of Filamentous Fungi. In: Fiechter, A. (eds) History of Modern Biotechnology II. Advances in Biochemical Engineering/Biotechnology, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44965-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44965-5_1

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67792-5

  • Online ISBN: 978-3-540-44965-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics