Skip to main content

Nonlinear Optical Effects and Selective Photomodification of Colloidal Silver Aggregates

  • Chapter
  • First Online:
Optical Properties of Nanostructured Random Media

Part of the book series: Topics in Applied Physics ((TAP,volume 82))

Abstract

Colloidal silver aggregates of nanoparticles were studied experimentally using optical spectroscopy, electron microscopy, near-field optics, and nonlinear optics. Changes in absorption spectra, local structure, and near-field optical response after the irradiation of fractal colloidal aggregates with a laser pulse (selective photomodification) were studied. The diameters of the selectively photomodified domains decreased as the laser wavelength increased, in accordance with the theory of the optics of fractal clusters. Giant enhancements of nonlinear optical responses were found for aggregated nanocomposites compared with nonaggregated. The enhancements are due to excitation of the collective plasmon modes in the aggregates. The plasmon modes are anisotropic and chiral. Nonlinear effects governed by local and nonlocal responses (degenerate four-wave mixing, nonlinear absorption, refraction and gyrotropy, inverse Faraday effect, and ellipse self-rotation) were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Chang, T. E. Furtak (Eds.), Surface-Enhanced Raman Scattering (Plenum Press, New York 1982)

    Google Scholar 

  2. A. V. Butenko, V. M. Shalaev, M. I. Stockman, Giant impurity nonlinearities in optics of fractal clusters, Sov. Phys. JETP 67, 60 (1988) [In Russian: Zh. Eksp. Teor. Fiz., 94, 107 (1988)]; Z. Phys. D 10, 81 (1988)

    Google Scholar 

  3. S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, M. I. Stockman, Surface-enhanced parametric scattering of light by silver clusters, JETP Lett. 47, 243 (1988) [In Russian: Pis’ma v Zh. Eksp. Teor. Fiz., 47, 200 (1988)]

    ADS  Google Scholar 

  4. M. P. Andrews, M. G. Kuzyk, F. Ghbremichael, Local field enhancement of the cubic optical nonlinearity in fractal silver nanosphere/poly(methylmethacry-late) composites, Nonlinear Opt. 6, 103 (1993)

    Google Scholar 

  5. V. P. Drachev, S. V. Perminov, S. G. Rautian, V. P. Safonov, Giant nonlinear optical activity in an aggregated silver nanocomposite, JETP Lett. 68, 651–656 (1998) [In Russian: Pis’ma v ZhETF, 68, 618 (1998)]

    Article  ADS  Google Scholar 

  6. A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, M. I. Stockman, Revealing of wavelength-and polarization-selective photomodification of silver clusters, Sov. JETP Lett. 48, 571 (1988) [In Russian: Pis’ma v Zh. Eksp. Teor. Fiz., 48, 528 (1988)]

    ADS  Google Scholar 

  7. V. P. Safonov, V. M. Shalaev, V. A. Markel, Yu.E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, R. A. Armstrong, Spectral dependence of selective photomodification in fractal aggregates of colloidal particles, Phys. Rev. Lett. 80, 1102–1105 (1998)

    Article  ADS  Google Scholar 

  8. V. M. Shalaev, M. I. Stockman, Optical properties of fractal clusters (susceptibility, giant combination scattering by impurities), Sov. Phys. JETP 65, 287 (1987) [In Russian: Zh. Eksp. Teor. Fiz., 92, 509 (1987)]; Z. Phys. D 10, 71 (1988)

    Google Scholar 

  9. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  10. R. H. M. Groeneveld, R. Sprik, A. Lagendijk, Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au, Phys. Rev. B 51, 11433–11445 (1995)

    Article  ADS  Google Scholar 

  11. M. Perner, P. Post, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, H. Schmidt: Optically induced damping of the surface plasmon resonance in gold colloids, Phys. Rev. Lett. 78, 2192–2195 (1997)

    Article  ADS  Google Scholar 

  12. D. Weitz, M. Oliveria, Fractal structures formed by kinetic aggregation of aqueous gold colloids, Phys. Rev. Lett. 52, 1433–1436 (1984)

    Article  ADS  Google Scholar 

  13. B. M. Smirnov, Fractal Clusters, Sov. Adv. Phys. 149, 177–219 (1986)

    Google Scholar 

  14. S. Alexander, R. Orbach, Density of states on fractals: fractons, J. Phys. Lett. (Paris) 43, L625–L631 (1982)

    Article  Google Scholar 

  15. V. A. Markel, L. A. Muratov, M. A. Stockman, T. F. George, Theory and numerical simulation of optical properties of fractal clusters, Phys. Rev. B 43, 8183 (1991)

    Article  ADS  Google Scholar 

  16. D. W. Schaefer, J. E. Martin, P. Wiltzius, S. Cannell, Fractal geometry of colloidal aggregates., Phys. Rev. Lett. 52, 2371 (1984)

    Article  ADS  Google Scholar 

  17. A. Boukenter, B. Champagnon, E. Duval, Low-frequency Raman scattering from fractal vibrational modes in silica gel., Phys. Rev. Lett. 57, 2391–2395 (1986)

    Article  ADS  Google Scholar 

  18. Yu.E. Danilova, V. A. Markel, V. P. Safonov, The Absorption of Light by the Random Silver Clusters [In Russian: Optika atmosfery i okeana 6, 1436 (1993)]

    Google Scholar 

  19. Yu.E. Danilova, V. P. Safonov, Absorption spectra and photomodification of silver fractal clusters, in Fractal Reviews in the Natural and Applied Sciences, M. M. Novak (Ed.) (Chapman, London 1995) pp. 101–111

    Google Scholar 

  20. M. I. Stockman, L. N. Pandey, L. S. Muratov, T. F. George, Optical absorption and localization of eigenmodes in disordered clusters, Phys. Rev. B 51, 185–195 (1995)

    Article  ADS  Google Scholar 

  21. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. A. Armstrong, Small-particle composites. I. Linear optical properties, Phys. Rev. B 53, 2425–2436 (1996)

    Article  ADS  Google Scholar 

  22. M. I. Stockman, Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters, Phys. Rev. E 56, 6494–6507 (1997)

    Article  ADS  Google Scholar 

  23. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  24. V. M. Shalaev, R. Botet, A. V. Butenko, Localization of collective dipole excitations on fractals, Phys. Rev. B 48, 6662 (1993)

    Article  ADS  Google Scholar 

  25. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, R. Botet, Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters, Phys. Rev. Lett. 72, 4149 (1994)

    Article  ADS  Google Scholar 

  26. A. Campion, P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev. 27, 241–250 (1998)

    Article  Google Scholar 

  27. R. W. Boyd, Nonlinear Optics (Academic, San Diego 1992)

    Google Scholar 

  28. S. A. Akhmanov, G. A. Lyakhov, V. A. Makarov, V. I. Zharikov, Theory of nonlinear optical activity in isotropic media and liquid crystals, Optica Acta 29, 1359–1369 (1982)

    ADS  Google Scholar 

  29. A. I. Plekhanov, G. L. Plotnikov, V. P. Safonov, Production and spectroscopic study of silver fractal clusters by laser evaporation of target, [In Russian: Optika spektroskopiya 71, 775 (1991)]

    Google Scholar 

  30. Yu. E. Danilova, A. I. Plekhanov, V. P. Safonov, Experimental study of polarization-selective holes, burning in absorption spectra of metal fractal clusters., Physica A 185, 61–65 (1992)

    Article  ADS  Google Scholar 

  31. Yu. E. Danilova, S. G. Rautian, V. P. Safonov, Interaction of intense light with fractal clusters: absorption, optical phase conjugation, photomodification, Bull. Russian Acad. Sci., Phys. 60, 56 (1996) [In Russian: Izvestiya RAN ser. fizich., 60, 56 (1996)]

    Google Scholar 

  32. J. A. Creighton, C. G. Blatchford, M. G. Albrecht, Plasma-resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, J. Chem. Soc. Faraday Trans. II 75, 790 (1979)

    Article  Google Scholar 

  33. V. P. Safonov, Yu. E. Danilova, V. P. Drachev, S. V. Perminov, Optical non-linearities in metal colloidal solutions, in Optics of Nano structured Materials, T. F. George, V. A. Markel (Eds.) (Wiley, New York, 2001) pp. 283–312

    Google Scholar 

  34. V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, M. Moskovits, Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters, Phys. Rev. B 59, 10903–10909 (1999)

    Article  ADS  Google Scholar 

  35. V. M. Shalaev, Electromagnetic properties of small-particle composites, Phys. Rep. 272, 61–137 (1996)

    Article  ADS  Google Scholar 

  36. S. M. F. Griezer, F. Heard, C. G. Barraclough, J. V. Sanders, The characterization of Ag Sols by Electron Microscopy, Optical Absorption and Electrophoresis, J. Colloid. Interfacial Sci. 93, 545–555 (1983)

    Article  Google Scholar 

  37. G. Frens, Th. G. Overbeek, Carey Lea’s colloidal silver, Kolloid Z. Polym. 233, 922 (1969)

    Article  Google Scholar 

  38. P. C. Lee, D. Meisel, Adsorption and surface-enhanced Raman scattering of dyes on silver and gold soles, J. Phys. Chem. 86, 3391 (1982)

    Article  Google Scholar 

  39. H. Zhu, R. S. Averback, Sintering process of two nanoparticles:a study by molecular dynamics simulations, Philos. Mag. Lett. 73, 27–33 (1996)

    Article  ADS  Google Scholar 

  40. K. Baba, K. Yamaki, M. Miyagi, Metal island films for write-once optical data storage media., In Chemistry and Physics of small-scale Structures, Opt. Soc. Am. Tech. Dig. Ser. 2, P. 52–54 (1997)

    Google Scholar 

  41. F. Claro, The effect of laser irradiation on the formation and destruction of clusters and cluster arrays., Physica A 241, 223–225 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  42. W. D. Bragg, V. P. Safonov, W. Kim, K. Banerjee, M. R. Young, J. G. Zhu, Z. C. Ying, R. L. Armstrong, V. M. Shalaev, Near-field optical studies of local photomodification in nanostructured materials., J. Microsc. 194, 574–577 (1999)

    Article  Google Scholar 

  43. W. D. Bragg, K. Banerjee, V. A. Podolskiy, V. P. Safonov, J. G. Zhu, V. M. Shalaev, Z. C. Ying, Study of local photomodification of nanomaterials using near-field optics, SPIE Proc. 3791, 85–92 (1999)

    Article  ADS  Google Scholar 

  44. D. Ricard, P. Roussignol, C. Flytzanis, Surface-mediated enhancement of optical phase conjugation in metal colloids, Opt. Lett. 10, 511–513 (1985)

    Article  ADS  Google Scholar 

  45. F. Hache, D. Ricard, C. Flytzanis, Optical nonlineariries of small metal particles: surface-mediated resonance and quantum size effects, J. Opt. Soc. Am. B 3, 1647–1655 (1986)

    Article  ADS  Google Scholar 

  46. F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, The optical Kerr effect in small metal particles and metal colloids — the case of gold, Appl. Phys. A 47, 347–357 (1988)

    Article  ADS  Google Scholar 

  47. K. Uchida, S. Kaneko, S. Omi, C. Hate, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, A. Nakamura: Optical nonlinearities of a high-concentration of small metal particles dispersed in glass-copper and silver particles, J. Opt. Soc. Am. B 11, 1236–1243 (1994)

    Article  ADS  Google Scholar 

  48. S. G. Rautian, Nonlinear saturation spectroscopy of the degenerate electron gas in spherical metallic particles, Sov. JETP 85, 451–461 (1997)

    Article  ADS  Google Scholar 

  49. S. M. Nie, S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275, 1102 (1997)

    Article  Google Scholar 

  50. A. V. Butenko, Yu.E. Danilova, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, P. A. Chubakov, V. M. Shalaev, M. I. Stockman, Nonlinear optics of metal fractal clusters, Z. Phys. D 17, 283–289 (1990)

    Article  ADS  Google Scholar 

  51. Yu. E. Danilova, N. N. Lepeshkin, S. G. Rautian, V. P. Safonov, Excitation localization and nonlinear optical processes in colloidal silver aggregates, Physica A 241, 231–235 (1997)

    Article  ADS  Google Scholar 

  52. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quant. Electron 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  53. R. A. Armstrong, V. P. Safonov, N. N. Lepeshkin, W. Kim, V. M. Shalaev, Giant optical nonlinearities of fractal colloid aggregates, In Nonlinear Optical Liquids and Power Limiters, SPIE Proc. 3146 107–115 (1997)

    Article  ADS  Google Scholar 

  54. V. M. Shalaev, C. Douketis, T. Haslet, T. Stuckless, M. Moskovits, Two-photon electron emission from smooth and rough metal film in the threshold region, Phys. Rev. B 53, 11193–11206 (1996)

    Article  ADS  Google Scholar 

  55. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, G. K. L. Wong, Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales, Opt. Lett. 23, 388–390 (1998)

    Article  ADS  Google Scholar 

  56. H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, P. Sheng, Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold, Appl. Phys. Lett. 70, 1–3 (1997)

    Article  ADS  Google Scholar 

  57. V. M. Shalaev, E. Y. Poliakov, V. A. Markel, Small-particle composites. II. Nonlinear optical properties, Phys. Rev. B 53, 2437–2449 (1996)

    Article  ADS  Google Scholar 

  58. S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, S. Berntsen, V. M. Shalaev: Direct observation of localized dipolar excitations on rough nanostructured surfaces, Phys. Rev. B 58, 11441 (1998)

    Article  ADS  Google Scholar 

  59. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, Cambridge 1982)

    Google Scholar 

  60. V. P. Drachev, W. D. Bragg, V. P. Safonov, V. A. Podolskiy, W. Kim, Z. C. Ying, R. L. Armstrong, V. M. Shalaev, Large Local Optical Activity in Fractal Aggregates of Nanoparticles, J. Opt. Soc. Am. B 18, issue 12 (2001) (to be published)

    Google Scholar 

  61. S. Ducourtieux, S. Gresillon, A. Boccara, J. Rivoal, X. Quelin, P. Gadenne, V. P. Drachev, W. D. Bragg, V. P. Safonov, V. A. Podolskiy, Z. C. Ying, R. A. Armstrong, V. M. Shalaev, Percolation and fractal composites: Optical studies, J. Nonlinear Opt. Phys. Mater. 9, 105–116 (2000)

    ADS  Google Scholar 

  62. W. D. Bragg, V. P. Safonov, V. M. Shalaev, W. Kim, Z. C. Ying, K. Banerijee, R. L. Armstrong, V. A. Markel: Near-field observation of selective photomodification in fractal aggregates, Conf. Lasers and Electro-Optics, Baltimore, 1999. Tech. Dig., CWO7 (Optical Society of America, Washington 1999)

    Google Scholar 

  63. P. Maker, R. Terhune, C. Savage, Intensity-dependent changes in the refractive index of liquids, Phys. Rev. Lett. 12, 507–509 (1964)

    Article  ADS  Google Scholar 

  64. H. Hirai, Formation and catalytic functionality of synthetic polymer-noble metal colloid, J. Macromol. Sci. Chem. A 13, 633–649 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drachev, V.P., Perminov, S.V., Rautian, S.G., Safonov, V.P. (2002). Nonlinear Optical Effects and Selective Photomodification of Colloidal Silver Aggregates. In: Shalaev, V.M. (eds) Optical Properties of Nanostructured Random Media. Topics in Applied Physics, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44948-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44948-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42031-6

  • Online ISBN: 978-3-540-44948-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics