Skip to main content

SERS and the Single Molecule

  • Chapter
  • First Online:
Optical Properties of Nanostructured Random Media

Part of the book series: Topics in Applied Physics ((TAP,volume 82))

Abstract

Surface Enhanced Raman spectroscopy (SERS) was discovered in 1978 and has grown to become a significant surface diagnostic and analytical technique. It has also launched a wide variety of investigations into the electromagnetic, and especially the optical, properties of nanostructured disordered materials. A number of phenomena contribute to SERS including adsorbate resonances as well as new resonances (such as metal to molecule charge transfer transitions) that result form the formation of the adsorbate-to-surface bonds, or other adsorbate-metal interactions. Chief among the contributions to SERS, however, is the enhancement of the optical fields in the vicinity of the nanoparticles constituting the SERS-active system. The field enhancement is especially high when highly localizable resonances such as surface plasmons are excited. Aggregates and assemblies of nanoparticles (of appropriate materials) can, in turn, manifest unusually enhanced SERS by virtue of particle-particle interactions. For example, while the SERS enhancement in the vicinity of single silver nanoparticles rarely exceed 104, the Raman spectrum of molecules located in the interstitial volume between two closely-spaced nanoparticles can be enhanced some 10 orders of magnitude when the two particles approach each another to within molecular dimensions and the system is excited at an appropriate wavelength. Other aggregates can Show similar levels of enhancement at special locations within the aggregate. Large fractal aggregates form a special class of enhancing aggregates. Illuminating such aggregates, in general, results in a highly inhomogeneous distribution of enhancement over the body of the aggregate with electromagnetic hot Spots where the Raman enhancement can reach or slightly exceed 10 orders of magnitude. Moreover, such hot Spots can be excited with a broad range of wavelengths (although the pattern of hot spots is critically wavelength dependent). Recently, reports have been published suggesting SERS enhancements upwards of 1014, sufficient for single molecule SERS detection. Although the cause of such huge enhancements was at first mysterious, we suggest that these observations result from the aforementioned electromagnetic effects in aggregates combined with either intramolecular or metal-to-molecule (or molecule-tometal) resonances. We also Show that the purported optical pumping of vibrationally excited states by such intense SERS transitions is spurious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Moskovits: Rev. Mod. Phys. 57, 783 (1985); R. K. Chang: Ber. Bunsen Ges. Phys. Chem. 91, 296 (1987)

    Article  ADS  Google Scholar 

  2. J. T. Krug, G. D. Wang, S. R. Emory, S. M. Nie: J. Am. Chem. Soc. 121, 9208 (1999); S. R. Emery, W. E. Haskins, S. M. Nie: J. Am. Chem. Soc. 120, 8009 (1998); W. A. Lyon, S. M. Nie: Anal. Chem. 69, 3400 (1997); S. M. Nie: Emery SR, Science 275, 1102 (1997); H. Xu, E. J. Bjerneld, M. Käll, L. Börjesson: Phys. Rev. Lett. 83, 4357 (1999)

    Article  Google Scholar 

  3. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld: Phys. Rev. Lett. 76, 2444 (1996); K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld: Chem. Phys. 247, 155 (1999); K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari, M. S. Feld: Appl. Spectrosc. 52, 1493 (1998); K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, M. S. Feld: J. Raman Spectrosc. 29, 743 (1998); K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, M. S. Feld: Phys. Rev. E 57, R6281 (1998); K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld: Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  4. A. M. Michaels, M. Nirmal, L. E. Brus: J. Am. Chem. Soc. 121, 9932 (1999)

    Article  Google Scholar 

  5. M. Kerker, D. Wang, H. Chew: Appl. Opt. 19, 4159 (1980)

    Article  ADS  Google Scholar 

  6. A. Otto: in Light Scattering in Solids IV, M. Cardona, G. Gundtherodt (Eds.) (Springer Berlin, Heidelberg 1984) pp. 289–418

    Google Scholar 

  7. B. N. Persson: Chem. Phys. Lett. 82, 561 (1981)

    Article  ADS  Google Scholar 

  8. P. K. Aravind, A. Nitzan, H. Metiu: Surf. Sci. 110, 189 (1981); N. Liver, A. Nitzan, J. I. Gersten: Chem. Phys. Lett. 111, 449 (1984); A. Wirgin, T. López-Ríos: Opt. Commun. 48, 416 (1984); N. Garcia, G. Diaz, J. J. Saenz, C. Ocal: Surf. Sci. 143, 342 (1984); P. A. Kneipp, T. L. Reinecke: Phys. Rev. B 45, 9091 (1992); F. J. García-Vidal, J. B. Pendry: Phys. Rev. L 77, 1163 (1996)

    Article  ADS  Google Scholar 

  9. D. A. Weitz, M. Oliveria: Phys. Rev. Lett. 52, 1433 (1984)

    Article  ADS  Google Scholar 

  10. M. I. Stockman: Phys. Rev. E 56, 6494 (1997)

    Article  ADS  Google Scholar 

  11. V. M. Shalaev, R. Botet, J. Mercer, E. B. Stechel: Phys. Rev. B 54, 8235 (1996); E. Y. Poliakov, V. M. Shalaev, V. A. Markel, R. Botet: Opt. Lett. 21, 1628 (1996); V. M. Shalaev, A. K. Sarychev: Phys. Rev. B 57, 13265 (1998); S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, V. M. Shalaev: Phys. Rev. Lett. 82, 4520 (1999)

    Article  ADS  Google Scholar 

  12. V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, M. Moskovits: Phys. Rev. B 16, 8080 (1999); P. Zhang, T. Haslett, C. Douketis, M. Moskovits: Phys. Rev. B 57, 15513 (1998); D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. Shalaev, J. S. Suh, R. Botet: Phys. Rev. Lett. 72, 4149 (1994)

    Google Scholar 

  13. T. L. Haslett, L. Tay, M. Moskovits: J. Chem. Phys. 113, 1641 (2000)

    Google Scholar 

  14. A. M. Michaels, J. Yang, L. Brus, unpublished

    Google Scholar 

  15. V. M. Shalaev, personal communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moskovits, M., Tay, LL., Yang, J., Haslett, T. (2002). SERS and the Single Molecule. In: Shalaev, V.M. (eds) Optical Properties of Nanostructured Random Media. Topics in Applied Physics, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44948-5_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-44948-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42031-6

  • Online ISBN: 978-3-540-44948-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics