Skip to main content

Dunkl Operators: Theory and Applications

  • Chapter
  • First Online:
Orthogonal Polynomials and Special Functions

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1817))

Abstract

These lecture notes are intended as an introduction to the theory of rational Dunkl operators and the associated special functions, with an emphasis on positivity and asymptotics. We start with an outline of the general concepts: Dunkl operators, the intertwining operator, the Dunkl kernel and the Dunkl transform. We point out the connection with integrable particle systems of Calogero-Moser-Sutherland type, and discuss some systems of orthogonal polynomials associated with them. A major part is devoted to positivity results for the intertwining operator and the Dunkl kernel, the Dunkl-type heat semigroup, and related probabilistic aspects. The notes conclude with recent results on the asymptotics of the Dunkl kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A., Pocketbook of Mathematical Functions. Verlag Harri Deutsch, Frankfurt/Main, 1984.

    MATH  Google Scholar 

  2. Baker, T.H., Forrester, P.J., The Calogero-Sutherland model and generalized classical polynomials. Comm. Math. Phys. 188 (1997), 175–216.

    Article  MATH  MathSciNet  Google Scholar 

  3. ___, The Calogero-Sutherland model and polynomials with prescribed symmetry. Nucl. Phys. B 492 (1997), 682–716.

    Article  MATH  MathSciNet  Google Scholar 

  4. ___, Non-symmetric Jack polynomials and integral kernels. Duke Math. J. 95 (1998), 1–50.

    Article  MATH  MathSciNet  Google Scholar 

  5. Brink, L., Hansson, T.H., Konstein, S., Vasiliev, M.A., The Calogero model-anyonic representation, fermionic extension and supersymmetry. Nucl. Phys. B 401 (1993), 591–612.

    Article  MATH  MathSciNet  Google Scholar 

  6. Calogero, F., Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12 (1971), 419–436.

    Article  MathSciNet  Google Scholar 

  7. Chihara, T.S., An Introduction to Orthogonal Polynomials. Gordon and Breach, 1978.

    Google Scholar 

  8. Davies, E.B.: Spectral Theory and Differential Operators. Cambridge University Press, 1995.

    Google Scholar 

  9. van Diejen, J.F., Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement. Comm. Math. Phys. 188 (1997), 467–497.

    Article  MATH  MathSciNet  Google Scholar 

  10. van Diejen, J.F., Vinet, L. Calogero-Sutherland-Moser Models. CRM Series in Mathematical Physics, Springer-Verlag, 2000.

    Google Scholar 

  11. Dunkl, C.F., Reflection groups and orthogonal polynomials on the sphere. Math. Z. 197 (1988), 33–60.

    Article  MATH  MathSciNet  Google Scholar 

  12. ___, Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311 (1989), 167–183.

    Article  MATH  MathSciNet  Google Scholar 

  13. ___, Operators commuting with Coxeter group actions on polynomials. In: Stanton, D. (ed.), Invariant Theory and Tableaux, Springer, 1990, pp. 107–117.

    Google Scholar 

  14. ___, Integral kernels with reflection group invariance. Canad. J. Math. 43 (1991), 1213–1227.

    MATH  MathSciNet  Google Scholar 

  15. ___, Hankel transforms associated to finite reflection groups. In: Proc. of the special session on hypergeometric functions on domains of positivity, Jack polynomials and applications. Proceedings, Tampa 1991, Contemp. Math. 138 (1992), pp. 123–138.

    MathSciNet  Google Scholar 

  16. ___, Intertwining operators associated to the group S3. Trans. Amer. Math. Soc. 347 (1995), 3347–3374.

    Article  MATH  MathSciNet  Google Scholar 

  17. ___, Symmetric Functions and BN-invariant spherical harmonics. Preprint; math.CA/0207122.

    Google Scholar 

  18. Dunkl, C.F., de Jeu M.F.E., Opdam, E.M., Singular polynomials for finite reflection groups. Trans. Amer. Math. Soc. 346 (1994), 237–256.

    Article  MATH  MathSciNet  Google Scholar 

  19. Dunkl, C.F., Xu, Yuan, Orthogonal Polynomials of Several Variables; Cambridge Univ. Press, 2001.

    Google Scholar 

  20. Eastham, M.S.P., The Asymptotic Solution of Linear Differential Systems: Applications of the Levinson Theorem. Clarendon Press, Oxford 1989.

    MATH  Google Scholar 

  21. Fell, J.M.G., Doran, R.S., Representations of-Algebras, Locally Compact Groups, and Banach—Algebraic Bundles, Vol. 1. Academic Press, 1988.

    Google Scholar 

  22. Graham, C., McGehee, O.C., Essays in Commutative Harmonic Analysis, Springer Grundlehren 238, Springer-Verlag, New York 1979.

    MATH  Google Scholar 

  23. Grove, L.C., Benson, C.T., Finite Reflection Groups; Second edition. Springer, 1985.

    Google Scholar 

  24. Ha, Z.N.C., Exact dynamical correlation functions of the Calogero-Sutherland model and one dimensional fractional statistics in one dimension: View from an exactly solvable model. Nucl. Phys. B 435 (1995), 604–636.

    Article  MATH  MathSciNet  Google Scholar 

  25. Haldane, D., Physics of the ideal fermion gas: Spinons and quantum symmetries of the integrable Haldane-Shastry spin chain. In: A. Okiji, N. Kamakani (eds.), Correlation effects in low-dimensional electron systems. Springer, 1995, pp. 3–20.

    Google Scholar 

  26. Heckman, G.J., A remark on the Dunkl differential-difference operators. In: Barker, W., Sally, P. (eds.) Harmonic analysis on reductive groups. Progress in Math. 101, Birkhäuser, 1991. pp. 181–191.

    Google Scholar 

  27. ___, Dunkl operators. Séminaire Bourbaki 828, 1996-97; Astérisque 245 (1997), 223–246.

    MathSciNet  Google Scholar 

  28. Helgason, S., Groups and Geometric Analysis. American Mathematical Society, 1984.

    Google Scholar 

  29. Humphreys, J.E., Reflection Groups and Coxeter Groups. Cambridge University Press, 1990.

    Google Scholar 

  30. de Jeu, M.F.E., The Dunkl transform. Invent. Math. 113 (1993), 147–162.

    Article  MATH  MathSciNet  Google Scholar 

  31. ___, Dunkl operators. Thesis, University of Leiden, 1994.

    Google Scholar 

  32. ___, Subspaces with equal closure. Preprint. math.CA/0111015.

    Google Scholar 

  33. Kakei, S., Common algebraic structure for the Calogero-Sutherland models. J. Phys. A 29 (1996), L619–L624.

    Article  MathSciNet  Google Scholar 

  34. Kallenberg, O., Foundations of Modern Probability. Springer-Verlag, 1997.

    Google Scholar 

  35. Knop, F., Sahi, S., A recursion and combinatorial formula for Jack polynomials. Invent. Math. 128 (1997), 9–22.

    Article  MATH  MathSciNet  Google Scholar 

  36. Lapointe L., Vinet, L., Exact operator solution of the Calogero-Sutherland model. Comm. Math. Phys. 178 (1996), 425–452.

    Article  MATH  MathSciNet  Google Scholar 

  37. Lassalle, M., Polynômes de Laguerre généralisés. C.R. Acad. Sci. Paris t. 312 Série I (1991), 725–728

    MATH  MathSciNet  Google Scholar 

  38. ___, Polynômes de Hermite généralisés. C.R. Acad. Sci. Paris t. 313 Série I (1991), 579–582.

    MATH  MathSciNet  Google Scholar 

  39. Macdonald, I.G., The Volume of a Compact Lie Group. Invent. Math. 56 (1980), 93–95.

    Article  MATH  MathSciNet  Google Scholar 

  40. ___, Some conjectures for root systems. SIAM J. Math. Anal. 13 (1982), 988–1007.

    Article  MATH  MathSciNet  Google Scholar 

  41. Moser, J., Three integrable Hamiltonian systems connected with isospectral deformations, Adv. in Math. 16 (1975), 197–220.

    Article  MATH  Google Scholar 

  42. Olshanetsky, M.A., Perelomov, A.M., Completely integrable Hamiltonian systems connected with semisimple Lie algebras. Invent. Math. 37 (1976), 93–108.

    Article  MATH  MathSciNet  Google Scholar 

  43. ___, Quantum systems related to root systems, and radial parts of Laplace operators. Funct. Anal. Appl. 12 (1978), 121–128.

    Article  Google Scholar 

  44. Opdam, E.M., Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compositio Math. 85 (1993), 333–373.

    MATH  MathSciNet  Google Scholar 

  45. ___, Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175 (1995), 75–121

    Article  MATH  MathSciNet  Google Scholar 

  46. Pasquier, V.: A lecture on the Calogero-Sutherland models. In: Integrable models and strings (Espoo, 1993), Lecture Notes in Phys. 436, Springer, 1994, pp. 36–48.

    Google Scholar 

  47. Perelomov, A.M., Algebraical approach to the solution of a one-dimensional model of N interacting particles. Teor. Mat. Fiz. 6 (1971), 364–391.

    MathSciNet  Google Scholar 

  48. Polychronakos, A.P., Exchange operator formalism for integrable systems of particles. Phys. Rev. Lett. 69 (1992), 703–705.

    Article  MATH  MathSciNet  Google Scholar 

  49. Rösler, M., Bessel-type signed hypergroups on R. In: Heyer, H., Mukherjea, A. (eds.) Probability measures on groups and related structures XI. Proceedings, Oberwolfach 1994. World Scientific 1995, 292–304.

    Google Scholar 

  50. ___, Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys. 192 (1998), 519–542.

    Article  MATH  MathSciNet  Google Scholar 

  51. ___, Positivity of Dunkl’s intertwining operator. Duke Math. J. 98 (1999), 445–463.

    Article  MATH  MathSciNet  Google Scholar 

  52. ___, Short-time estimates for heat kernels associated with root systems, in Special Functions, Conf. Proc. Hong Kong June 1999, eds. C. Dunkl et al., World Scientific, Singapore, 2000, 309–323.

    Google Scholar 

  53. ___, One-parameter semigroups related to abstract quantum models of Calogero type. In: Infinite Dimensional Harmonic Analysis (Kyoto, Sept. 1999, eds. H. Heyer et al.) Gräbner-Verlag 2000, 290–305.

    Google Scholar 

  54. Rösler, M., de Jeu, M., Asymptotic analysis for the Dunkl kernel. math.CA-/0202083; to appear in J. Approx. Theory.

    Google Scholar 

  55. Rösler, M., Voit, M., Markov Processes related with Dunkl operators. Adv. Appl. Math. 21 (1998), 575–643.

    Article  MATH  Google Scholar 

  56. Rosenblum, M., Generalized Hermite polynomials and the Bose-like oscillator calculus. In: Operator Theory: Advances and Applications, Vol. 73, Basel, Birkhäuser Verlag 1994, 369–396.

    Google Scholar 

  57. Sutherland, B., Exact results for a quantum many-body problem in one dimension. Phys. Rep. A5 (1972), 1372–1376.

    Google Scholar 

  58. Titchmarsh, E.C., The Theory of Functions. 2nd ed., Oxford University Press, 1950.

    Google Scholar 

  59. Trimèche, K., Paley-Wiener Theorems for the Dunkl transform and Dunkl translation operators. Integral Transform. Spec. Funct. 13 (2002), 17–38.

    Article  MATH  Google Scholar 

  60. A. Wintner, On a theorem of Bôcher in the theory of ordinary linear differential equations, Amer. J. Math. 76 (1954), 183–190.

    Article  MATH  MathSciNet  Google Scholar 

  61. Ujino, H., Wadati., M., Rodrigues formula for Hi-Jack symmetric polynomials associated with the quantum Calogero model. J. Phys. Soc. Japan 65 (1996), 2423–2439.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rösler, M. (2003). Dunkl Operators: Theory and Applications. In: Koelink, E., Van Assche, W. (eds) Orthogonal Polynomials and Special Functions. Lecture Notes in Mathematics, vol 1817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44945-0_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44945-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40375-3

  • Online ISBN: 978-3-540-44945-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics