Skip to main content

Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions

  • Chapter
  • First Online:
Orthogonal Polynomials and Special Functions

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1817))

Abstract

In this minicourse I would like to present computer algebra algorithms for the work with orthogonal polynomials and special functions. This includes

  • •the computation of power series representations of hypergeometric type functions, given by “expressions”, like arcsin(x)/x,

  • • the computation of holonomic differential equations for functions, given by expressions,

  • • the computation of holonomic recurrence equations for sequences, given by expressions, like ( sunink ) x k/k!,

  • • the identification of hypergeometric functions,

  • • the computation of antidifferences of hypergeometric terms (Gosper’s algorithm), the computation of holonomic differential and recurrence equations for hypergeometric series, given the series summand, like

    $$ P_n \left( x \right) = \sum\limits_{k = 0}^n {\left( \begin{gathered} n \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} - n - 1 \\ k \\ \end{gathered} \right)} \left( {\frac{{1 - x}} {2}} \right)^k $$

    (Zeilberger’s algorithm),

  • • the computation of hypergeometric term representations of series (Zeilberger’s and Petkovšek’s algorithm),

  • • the verification of identities for (holonomic) special functions,

  • • the detection of identities for orthogonal polynomials and special functions,

  • • the computation with Rodrigues formulas,

  • • the computation with generating functions, corresponding algorithms for q -hypergeometric (basic hypergeometric) functions,

  • • the identification of classical orthogonal polynomials, given by recurrence equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almkvist, G. and Zeilberger, D.: The method of differentiating under the integral sign. J. Symbolic Computation 10 (1990), 571–591.

    Article  MATH  MathSciNet  Google Scholar 

  2. Böing, H. and Koepf, W.: Algorithms for q-hypergeometric summation in computer algebra. J. Symbolic Computation 28 (1999), 777–799.

    Article  MATH  Google Scholar 

  3. Bornemann, F.: private communication, 2002.

    Google Scholar 

  4. Char, B. W.: Maple 8 Learning Guide. Waterloo Maple, Waterloo, 2002.

    Google Scholar 

  5. Gasper, G. and Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications 35, Cambridge University Press, London and New York, 1990.

    Google Scholar 

  6. Gosper Jr., R. W.: Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 75 (1978), 40–42.

    Google Scholar 

  7. Gruntz, D. and Koepf, W.: Maple package on formal power series. Maple Technical Newsletter 2 (2) (1995), 22–28.

    Google Scholar 

  8. Koekoek, R. and Swarttouw, R. F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Report 98-17, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, Delft; electronic version available at http://aw.twi.tudelft.nl/~koekoek/askey, 1998.

  9. Koepf, W.: Power series in computer algebra. J. Symbolic Computation 13 1992), 581–603.

    Article  MATH  MathSciNet  Google Scholar 

  10. Koepf, W.: Identities for families of orthogonal polynomials and special functions. Integral Transforms and Special Functions 5 (1997), 69–102.

    Article  MATH  MathSciNet  Google Scholar 

  11. Koepf, W.: Hypergeometric Summation. Vieweg, Braunschweig/Wiesbaden, 1998.

    MATH  Google Scholar 

  12. Koepf, W. and Schmersau, D.: Representations of orthogonal polynomials. J. Comput. Appl. Math. 90 (1998), 57–94.

    Article  MATH  MathSciNet  Google Scholar 

  13. Koepf, W. and Schmersau, D.: Recurrence equations and their classical orthogonal polynomial solutions. Appl. Math. Comput. 128 (2–3), special issue on Orthogonal Systems and Applications (2002), 303–327.

    Article  MATH  MathSciNet  Google Scholar 

  14. Koornwinder, T. H. and Swarttouw, R.: rec2ortho: an algorithm for identifying orthogonal polynomials given by their three-term recurrence relation as special functions. http://turing.wins.uva.nl/~thk/recentpapers/rec2ortho.html, 1996-1998

  15. Le, H. Q., Abramov, S. A. and Geddes, K. O.: HypergeometricSum: A Maple package for finding closed forms of indefinite and definite sums of hypergeometric type. ftp://cs-archive.uwaterloo.ca/cs-archive/CS-2001-24, 2002.

  16. Monagan, M. B. et al.: Maple 8 Introductory Programming Guide, Waterloo Maple, Waterloo, 2002.

    Google Scholar 

  17. Petkovšek, M., Wilf, H. and Zeilberger, D.: A = B. A. K. Peters, Wellesley, 1996.

    Google Scholar 

  18. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I.: Integrals and Series. Vol. 3: More Special Functions. Gordon & Breach, New York, 1990.

    Google Scholar 

  19. Salvy, B. and Zimmermann, P.: GFUN: A Maple package for the manipulation of generating and holonomic functions in one variable. ACM Transactions on Mathematical Software 20 (1994), 163–177.

    Article  MATH  Google Scholar 

  20. Swarttouw, R.: CAOP: Computer algebra and orthogonal polynomials. http://amstel.wins.uva.nl:7090/CAOP, 1996–2002.

  21. Van Hoeij, M.: Finite singularities and hypergeometric solutions of linear recurrence equations. J. Pure Appl. Algebra 139 (1999), 109–131.

    Article  MATH  MathSciNet  Google Scholar 

  22. Vidunas, R. and Koornwinder, T. H.: Zeilberger method for non-terminating hypergeometric series. 2002, to appear.

    Google Scholar 

  23. Wolfram’s Research Mathematica Functions: http://www.functions.wolfram.com, 2002.

  24. Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discrete Math. 80 (1990), 207–211.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koepf, W. (2003). Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions. In: Koelink, E., Van Assche, W. (eds) Orthogonal Polynomials and Special Functions. Lecture Notes in Mathematics, vol 1817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44945-0_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44945-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40375-3

  • Online ISBN: 978-3-540-44945-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics