Skip to main content

A Common Viewpoint on Broad Kernel Filtering and Nonlinear Diffusion

  • Conference paper
  • First Online:
Scale Space Methods in Computer Vision (Scale-Space 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2695))

Included in the following conference series:

Abstract

Using a consistent adaptive smoothing formulation we show that both nonlinear diffusion and adaptive smoothing can be extended to an arbitrary window, a process called broad kernel filtering. Based on this idea, this paper presents a unified treatment of a number of well known nonlinear techniques for filtering. We show that bilateral filtering represents a particular choice of weights in the extended diffusion process, that is obtained from geometrical considerations. We then show that kernel density estimation applied in the joint spatial-range domain yields a powerful processing paradigm - the mean shift procedure, related to bilateral filtering but having additional flexibility. This establishes an attractive relationship between the theory of statistics and that of diffusion and energy minimization. We experimentally compare the discussed methods and give insights on their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Barash, “Bilateral Filtering and Anisotropic Diffusion: Towards a Unified Viewpoint,” Hewlett-Packard Laboratories Technical Report, HPL-2000-18(R.1), 2000.

    Google Scholar 

  2. D. Barash, “A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 6, p.844, 2002.

    Article  Google Scholar 

  3. G. Benedetti, S. Morosetti, “A Graph-Topological Approach to Recognition of Pattern and Similarity in RNA Secondary Structure,” Biophysical Chemistry, Vol. 59, p.179, 1996.

    Article  Google Scholar 

  4. M.J. Black, G. Sapiro, D. Marimont, and D. Heeger, “Robust Anisotropic Diffusion,” IEEE Transactions on Image Processing, Vol. 7, No. 3, p.421, 1998.

    Article  Google Scholar 

  5. T. Boult, R.A. Melter, F. Skorina, and I. Stojmenovic, “G-neighbors,” Proceedings of the SPIE, Vision Geometry II, Vol.2060, p.96, 1993.

    Google Scholar 

  6. T.F. Chan and J. Shen, “Variational Restoration of Non-flat Image Features: Models and Algorithms,” SIAM Journal of Applied Mathematics, Vol. 61(4), p.1338, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. T.F. Chan, S. Osher, and J. Shen, “The Digital TV Filter and Nonlinear Denoising,” IEEE Transactions on Image Processing, Vol. 10, No. 2, p.231, 2001.

    Article  MATH  Google Scholar 

  8. J.H. Chen, S.Y. Le, J. Maizel, “Prediction of Common Secondary Structures of RNAs: A genetic Algorithm Approach,” Nucleic Acids Research, Vol. 28, No. 4, p. 991, 2000.

    Article  Google Scholar 

  9. D. Comaniciu and P. Meer, “Mean Shift Analysis and Applications,” Proceedings of the 1999 IEEE International Conference on Computer Vision, Kerkyra, Greece, p. 1197, 1999.

    Google Scholar 

  10. D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach towards Feature Space,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, p.603, 2002.

    Article  Google Scholar 

  11. D. Comaniciu, “An Algorithm for Data-Driven Bandwidth Selection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No.2, 2003.

    Google Scholar 

  12. F. Durand and J. Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic Range Image,” Proceedings of ACM SIGGRAPH 2002, in Computer Graphics Proceedings, San Antonio, TX, 2002.

    Google Scholar 

  13. R. Durbin, S. Eddy, A. Krogh, G. Mitchison, “Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids”, Cambridge University Press, 1998.

    Google Scholar 

  14. M. Elad, “On the Bilateral Filter and Ways to Improve It,” IEEE Transactions on Image Processing, Vol. 11, No. 10, p.1141, 2002.

    Article  MathSciNet  Google Scholar 

  15. M. Fiedler, “Algebraic Connectivity of Graphs,” Czechoslovak Mathematical Journal, Vol.23, p.298, 1973.

    MathSciNet  Google Scholar 

  16. H.H. Gan, S. Pasquali, T. Schlick, “Exploring The Repertoire of RNA Secondary Motifs Using Graph Theory with Implications for RNA Design,” Nucleic Acid Research, 2002, Submitted.

    Google Scholar 

  17. A.P. Gultyaev, F.H.D. van Batenburg, C.W.A. Pleij, “The Computer Simulation of RNA Folding Pathways Using a Genetic Algorithm,” Journal of Molecular Biology, Vol.250, p.37, 1995.

    Article  Google Scholar 

  18. D.A.M. Konings and R.R. Gutell, “A Comparison of Thermodynamic Foldings with Comparatively Derived Structures of 16S and 16S-like rRNAs,” RNA, Vol.1, No.6, p.559.

    Google Scholar 

  19. I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, P. Schuster, “Fast Folding and Comparison of RNA Secondary Structures,” Monatshefte fur Chemie, Vol. 125, p. 167, 1994.

    Article  Google Scholar 

  20. J.J. Koenderink and A.J. Van Doorn, “The Structure of Locally Orderless Images,” International Journal of Computer Vision, 21(2/3), p.159, 1999.

    Article  Google Scholar 

  21. S. Y. Le, R. Nussinov, J.V. Maizel, “Tree Graphs of RNA Secondary Structures and Their Comparisons”, Computers and Biomedical Research, Vol. 22, p.461, 1989.

    Article  Google Scholar 

  22. H. Margalit, B.A. Shapiro, A.B. Oppenheim, J.V. Maizel, “Detection of Common Motifs in RNA Secondary Structure,” Nucleic Acids Research, Vol. 17, No. 12, p. 4829, 1989.

    Article  Google Scholar 

  23. D.H. Mathews, J. Sabina, M. Zuker, D.H. Turner, “Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure,” Journal of Molecular Biology, Vol. 288, p.911–940, 1999.

    Article  Google Scholar 

  24. S. Osher, J. Shen, “Digitized PDE Method for Data Restoration,”Analytic-Computational Methods in Applied Mathematics, G.A. Anastassiou, Ed., 2000.

    Google Scholar 

  25. P. Perona and J. Malik, “Scale-Space and Edge Detection Using Anisotropic Diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 7, p.629, 1990.

    Article  Google Scholar 

  26. A. Pothen, H. Simon, K.P. Liou, “Partitioning Sparse Matrices with Eigenvectors of Graphs,” SIAM Journal on Matrix Analysis and Applications, Vol. 11, p.430, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. M. Reidys, P. F. Stadler, P. Schuster, “Generic Properties of Combinatory Maps: Neural Networks of RNA Secondary Structures,” Bulletin of Mathematical Biology, Vol. 59, No. 2, p.339, 1997.

    Article  MATH  Google Scholar 

  28. E. Rivas, S.E. Eddy, “A Dynamic Programming Algorithm for RNA Structure Prediction Including Pseudoknots,” Journal of Molecular BIology, Vol. 185, No. 5, p.2053, 1999.

    Article  Google Scholar 

  29. L.I. Rudin, S. Osher, and F. Fatemi, “Nonlinear Total Variation Based Noise Removal Algorithms,” Physica D., Vol. 60, p.259, 1992.

    Article  MATH  Google Scholar 

  30. P. Saint-Marc, J.S. Chen, and G. Medioni, “Adaptive Smoothing: A General Tool for Early Vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, p.514, 1991.

    Article  Google Scholar 

  31. N. Sochen, R. Kimmel, and A.M. Bruckstein, “Diffusions and Confusions in Signal and Image Processing,” Journal of Mathematical Imaging and Vision, 14(3), p.195, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  32. N. Sochen, R. Kimmel, and R. Malladi, “A Geometrical Framework for Low Level Vision,” IEEE Transactions on Image Processing, Vol. 7, No. 3, p.310, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  33. C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and Color Images,” Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India, 1998.

    Google Scholar 

  34. J. Weickert, Anisotropic Diffusion in Image Processing, Tuebner Stuttgart, 1998. ISBN 3-519-02606-6.

    Google Scholar 

  35. J. Weickert, B.M. ter Haar Romeny, and M. Viergever, “Efficient and Reliable Schemes for Nonlinear Diffusion Filtering,” IEEE Transactions on Image Processing, Vol. 7, No. 3, p.398, 1998.

    Article  Google Scholar 

  36. J. van de Weijer and R. van den Boomgaard, “Local Mode Filtering,” Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Vol. 2, p. 428, 2001.

    Google Scholar 

  37. M. Zuker, “On Finding All Suboptimal Foldings of an RNA Molecule,” Science, Vol. 244, p.48, 1989.

    Article  MathSciNet  Google Scholar 

  38. M. Zuker, D.H. Mathews, D.H. Turner, “Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide In RNA Biochemistry and Biotechnology”, NATO ASI Series, J.J. Barciszewski and B.F.C. Clark, eds., p.11–43, Kluwer Academic Publishers, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barash, D., Comaniciu, D. (2003). A Common Viewpoint on Broad Kernel Filtering and Nonlinear Diffusion. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-44935-3_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics