Skip to main content

Texture Classification through Multiscale Orientation Histogram Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2695))

Abstract

This work presents a new approach to texture classification, in which orientation histograms and multiscale analysis have been combined to achieve a reliable method. From the outputs of a set of filters, the orientation and magnitude of the gradient in every point of a texture are estimated. By combining the orientations and relative magnitudes of the gradient, we build an orientation histogram for each texture. We have used Fourier analysis to measure the similarity between the histograms of different textures, considering the effects of a change in the size or orientation of the image to make our method invariant under these phenomena. Since different textures may generate very similar histograms, we have analyzed the evolution of these histograms at different scales, extracting a scale factor for each couple of compared textures to adjust the filters which are applied to them when the multiscale analysis is carried out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sonka, M., Hlavac, V., Boyle, R.: Image processing, analysis, and machine vision. PWS-ITP (1999)

    Google Scholar 

  2. Gorkani M.M., Picard, R. W.: Texture orientation for sorting photos “at a glance”. In the proceedings of IEEE conference on pattern recognition I (1995) 459–464

    Google Scholar 

  3. Randen, T., Husøy, J. H.: Filtering for texture classification: a comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21:4 (1999) 291–310

    Article  Google Scholar 

  4. Puzicha, J., Buhmann, J. M., Rubner, Y., Tomasi, C.: Empirical evaluation of dissimilarity measures for color and texture. In proceedings of the IEEE International Conference on Computer Vision (ICCV’99) (1999) 1165–1173

    Google Scholar 

  5. Tuceryan, M., Jain, A. K.: Texture analysis. In C.H. Chen, L.F. Pau, P.S.P. Wang, editors, The Handbook of Pattern Recognition and Computer Vision (2nd edition), World Scientific Publishing Co. (1998) 207–248

    Google Scholar 

  6. Alemán-Flores, M., Álvarez-León, L., Moreno-Díaz jr., R.: Modified Newton filters for edge orientation estimation, shape representation and motion analysis. Cuadernos del Instituto Universitario de Ciencias y Tecnologías Cibernéticas, Universidad de Las Palmas de Gran Canaria 17 (2001) 1–30

    Google Scholar 

  7. Moreno-Díaz jr., R.: Computación paralela y distribuida: relación estructurafunci ón en retinas. Tesis Doctoral (1993)

    Google Scholar 

  8. Columbia University and Utrecht University. Columbia-Utrecht Reflectance and Texture Database. http://www.cs.columbia.edu/CAVE/curet/.index.html

    Google Scholar 

  9. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision 46:3 (2002) 223

    Article  MATH  Google Scholar 

  10. Weickert, J.: Multiscale texture enhancement. R. Sara (Eds.), Computer analysis of images and patterns, Lecture Notes in Computer Science Springer Berlin 970 (1995) 230–237

    Google Scholar 

  11. Brezis, H.: Analyse fonctionelle. Masson (1983)

    Google Scholar 

  12. Evans, L.: Partial Differential Equations. American Mathematical Society (1998)

    Google Scholar 

  13. Lindeberg, T.: Scale space theory in computer vision. Kluwer Academic Publishers (1994)

    Google Scholar 

  14. Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. on Numerical Analysis 31:2 (1994) 590–605

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alemán-Flores, M., Álvarez-León, L. (2003). Texture Classification through Multiscale Orientation Histogram Analysis. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-44935-3_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics