Two-Dimensional Pattern Matching with Rotations

  • Amihood Amir
  • Ayelet Butman
  • Maxime Crochemore
  • Gad M. Landau
  • Malka Schaps
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2676)


The problem of pattern matching with rotation is that of finding all occurrences of a two-dimensional pattern in a text, in all possible rotations. We prove an upper and lower bound on the number of such different possible rotated patterns. Subsequently, given an m × m array (pattern) and an n × n array (text) over some finite alphabet Σ, we present a new method yielding an O(n 2 m 3) time algorithm for this problem.


Design and analysis of algorithms two-dimensional pattern matching rotation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Abrahamson. Generalized string matching. SIAM J. Comp., 16(6):1039–1051, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Amir, A. Butman, and M. Lewenstein. Real scaled matching. Information Processing Letters, 70(4):185–190, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Amir and M. Farach. Two dimensional dictionary matching. Information Processing Letters, 44:233–239, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Amir and G. Landau. Fast parallel and serial multidimensional approximate array matching. Theoretical Computer Science, 81:97–115, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Apostolico and Z. Galil (editors). Pattern Matching Algorithms. Oxford University Press, 1997.Google Scholar
  6. 6.
    R. Baeza-Yates and G. Valiente. An image similarity measure based on graph matching. In Proc. of the 7th Symposium on String Processing and Information Retrieval (SPIRE’2000), pages 28–38. I.E.E.E. CS Press, 2000.Google Scholar
  7. 7.
    M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.Google Scholar
  8. 8.
    M.J. Fischer and M.S. Paterson. String matching and other products. Complexity of Computation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113–125, 1974.Google Scholar
  9. 9.
    K. Fredriksson, G. Navarro, and E. Ukkonen. An index for two dimensional string matching allowing rotations. In Proc. IFIP International Conference on Theoretical Computer Science (IFIP TCS), volume 1872 of LNCS, pages 59–75. Springer, 2000.Google Scholar
  10. 10.
    K. Fredriksson, G. Navarro, and E. Ukkonen. Optimal Exact and Fast Approximate Two Dimensional Pattern Matching Allowing Rotations. In Proceedings of the 13th Annual Symposium on Combinatorial Pattern Matching (CPM 2002), volume 2373 of LNCS, pages 235–248. Springer, 2002.CrossRefGoogle Scholar
  11. 11.
    K. Fredriksson and E. Ukkonen. A rotation invariant filter for two-dimensional string matching. In Proc. 9th Annual Symposium on Combinatorial Pattern Matching (CPM 98), pages 118–125. Springer, LNCS 1448, 1998.CrossRefGoogle Scholar
  12. 12.
    K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate pattern matching under rotations and translations in 3D arrays. In Proc. of the 7th Symposium on String Processing and Information Retrieval (SPIRE’2000), pages 96–104. I.E.E.E. CS Press, 2000.Google Scholar
  13. 13.
    R. Giancarlo and R. Grossi. On the construction of classes of suffix trees for square matrices: Algorithms and applications. Information and Computation, 130(2):151–182, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997.Google Scholar
  15. 15.
    G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford at the Clarendon Press, fifth edition, 1979.Google Scholar
  16. 16.
    P. Indyk, R. Motwani, and S. Venkatasubramanian. Geometric matching under noise: Combinatorial bounds and algorithms. In Proc. 10th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 354–360, 1999.Google Scholar
  17. 17.
    G. M. Landau and U. Vishkin. Pattern matching in a digitized image. Algorithmica, 12(3/4):375–408, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    L. Schulman and D. Cardoze. Pattern matching for spatial point sets. Proc. 39th IEEE FOCS, pages 156–165, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Amihood Amir
    • 1
    • 3
    • 4
  • Ayelet Butman
    • 1
    • 3
  • Maxime Crochemore
    • 5
    • 6
    • 10
  • Gad M. Landau
    • 7
    • 8
    • 9
    • 11
  • Malka Schaps
    • 2
    • 3
  1. 1.Department of Computer ScienceBar-Ilan UniversityRamat-GanIsrael
  2. 2.Department of MathematicsBar-Ilan UniversityRamat-GanIsrael
  3. 3.Bar-Ilan UniversityIsrael
  4. 4.Georgia TechUSA
  5. 5.University of Marne-La-ValléeFrance
  6. 6.King’s College LondonLondon
  7. 7.University of HaifaHaifa
  8. 8.Polytechnic UniversityUSA
  9. 9.Department of Computer and Information SciencePolytechnic University, Six MetroTech CenterBrooklyn
  10. 10.Institut Gaspard-MongeUniversity of Marne-La-Vallée, and King’s College LondonLondon
  11. 11.Department of Computer ScienceHaifa UniversityHaifaIsrael

Personalised recommendations