Advertisement

On Minimizing Pattern Splitting in Multi-track String Matching

  • Kjell Lemström
  • Veli Mäkinen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2676)

Abstract

Given a pattern string P=p 1 p 2···p m and K parallel text strings \( \mathbb{T} = \left\{ {T^k = t_1^k \cdots t_n^k |1 \leqslant k \leqslant K} \right\} \) over an integer alphabet Σ, our task is to find the smallest integer κ > 0 such that P can be split into κ pieces P=P 1...P κ , where each P i has an occurrence in some text track \( T^{k_i } \) and these partial occurrences retain the order. We study some variations of this minimum splitting problem, such as splittings with limited gaps and transposition invariance, and show how to use sparse dynamic programming to solve the variations efficiently. In particular, we show that the minimum splitting problem can be interpreted as a shortest path problem on line segments.

Keywords

Line Segment Optimal Path Range Query Short Path Problem String Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.V. Aho and M.J. Corasick. Efficient string matching. Communications of the ACM, 18(6):333–340, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
  3. 3.
    R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard matching. In Proc. Symposium on Theory of Computing (STOC’2002), pages 592–601. ACM Press, 2002.Google Scholar
  4. 4.
    T. Crawford, C.S. Iliopoulos, and R. Raman. String matching techniques for musical similarity and melodic recognition. Computing in Musicology, 11:71–100, 1998.Google Scholar
  5. 5.
    M. Crochemore. String matching with constraints. In MFCS, pages 44–58, 1988.Google Scholar
  6. 6.
    M. Crochemore, C.S. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K. Tsichlas. Approximate string matching with gaps. Nordic Journal of Computing, 9(1):54–65, 2002.zbMATHMathSciNetGoogle Scholar
  7. 7.
    H. Gajewska and R. Tarjan. Deques with heap order. Information Processing Letters, 12(4):197–200, 1986.CrossRefGoogle Scholar
  8. 8.
    Z. Galil and K. Park. An improved algorithm for approximate string matching. SIAM J. Comput., 19:989–999, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    C.S. Iliopoulos and M. Kurokawa. String matching with gaps for musical melodic recognition. In Proc. Prague Stringology Conference 2002 (PSC’2002), pages 55–64, Prague, 2002.Google Scholar
  10. 10.
    G.M. Landau and U. Vishkin. Fast string matching with k differences. Journal of Computers and Systems, 37:63–78, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    K. Lemström and J. Tarhio. Transposition invariant pattern matching for multitrack strings. 2003. (submitted).Google Scholar
  12. 12.
    V. Mäkinen, G. Navarro, and E. Ukkonen. Algorithms for transposition invariant string matching. In Proceedings of the 20th International Symposium on Theoretical Aspects of Computer Science (STACS’2003), volume 2607 of Springer-Verlag LNCS, pages 191–202, 2003.Google Scholar
  13. 13.
    D. Meredith, G.A. Wiggins, and K. Lemström. Pattern induction and matching in polyphonic music and other multi-dimensional datasets. In the 5th World Multi-Conference on Systemics, Cybernetics and Informatics (SCI’2001), volume X, pages 61–66, Orlando, FLO, July 2001.Google Scholar
  14. 14.
    E. Ukkonen, K. Lemström, and V. Mäkinen. Sweepline the music! In Computer Science in Perspective, volume 2598 of Springer-Verlag LNCS, pages 330–342, 2003.CrossRefGoogle Scholar
  15. 15.
    E. Ukkonen and D. Wood. Fast approximate string matching with suffix automata. Algorithmica, 10:353–364, 1993.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Kjell Lemström
    • 1
  • Veli Mäkinen
    • 1
  1. 1.Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations