Expression-Invariant 3D Face Recognition

  • Alexander M. Bronstein
  • Michael M. Bronstein
  • Ron Kimmel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2688)


We present a novel 3D face recognition approach based on geometric invariants introduced by Elad and Kimmel. The key idea of the proposed algorithm is a representation of the facial surface, invariant to isometric deformations, such as those resulting from different expressions and postures of the face. The obtained geometric invariants allow mapping 2D facial texture images into special images that incorporate the 3D geometry of the face. These signature images are then decomposed into their principal components. The result is an efficient and accurate face recognition algorithm that is robust to facial expressions. We demonstrate the results of our method and compare it to existing 2D and 3D face recognition algorithms.


Face Recognition Range Image Facial Surface Geometric Invariant Face Recognition Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bledsoe, W. W. The model method in facial recognition. Technical report PRI 15, Panoramic Research Inc., Palo Alto (1966).Google Scholar
  2. [2]
    Turk, M., Pentland, A. Face recognition using eigenfaces, Proc. CVPR, pp. 586–591 (1991).Google Scholar
  3. [3]
    Belhumeur, V. I., Hespanha, J. P., Kriegman D. J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection, IEEE Trans. PAMI 19(7), pp. 711–720 (1997).Google Scholar
  4. [4]
    Frey, B. J., Colmenarez, A., Huang, T.S. Mixtures of local linear subspaces for face recognition, Proc. CVPR, pp. 32–37 (1998).Google Scholar
  5. [5]
    Moghaddam, B., Jebara, T., Pentland, A. Bayesian face recognition. Technical Report TR2000-42, Mitsubishi Electric Research Laboratories (2000).Google Scholar
  6. [6]
    Gordon, G. Face recognition from frontal and profile views, Proc. Int’l Workshop on Face and Gesture Recognition, pp. 47–52 (1996).Google Scholar
  7. [7]
    Beumier C., Acheroy, M. P. Automatic face authentication from 3D surface, Proc. British Machine Vision Conf. (BMVC), pp 449–458 (1998).Google Scholar
  8. [8]
    Huang, J., Blanz, V., Heisele, B. Face recognition using component-based SVM classification and morphable models, SVM 2002, pp. 334–341 (2002).Google Scholar
  9. [9]
    Blanz, V., Vetter, T. A morphable model for the synthesis of 3D faces, Proc. SIGGRAPH, pp. 187–194 (1999).Google Scholar
  10. [10]
    Mavridis, N., Tsalakanidou, F., Pantazis, D., Malassiotis, S., Strintzis, M. G. The HISCORE face recognition application: Affordable desktop face recognition based on a novel 3D camera, Proc. Int’l Conf. on Augmented Virtual Environments and 3D Imaging (ICAV3D), Mykonos, Greece (2001).Google Scholar
  11. [11]
    Bronstein, A. M., Bronstein, M. M., Kimmel, R. 3-Dimensional face recognition, US Provisional patent No. 60/416,243 (2002).Google Scholar
  12. [12]
    Faugeras, O. D., Hebert, M. A 3D recognition and positioning algorithm using geometrical matching between primitive surfaces, Proc. 7th Int’l Joint Conf. on Artificial Intelligence, pp. 996–1002 (1983).Google Scholar
  13. [13]
    Besl, P. J.. The free form matching problem. Machine vision for three-dimensional scene, In: Freeman, H. (ed.) New York Academic (1990).Google Scholar
  14. [14]
    Barequet, G., Sharir, M. Recovering the position and orientation of free-form objects from image contours using 3D distance map, IEEE Trans. PAMI, 19(9), pp. 929–948 (1997).Google Scholar
  15. [15]
    Schwartz, E. L., Shaw, A., Wolfson, E. A numerical solution to the generalized mapmaker’s problem: flattening nonconvex polyhedral surfaces, IEEE Trans. PAMI, 11, pp. 1005–1008 (1989).Google Scholar
  16. [16]
    Zigelman, G., Kimmel, R., Kiryati, N. Texture mapping using surface flattening via multi-dimensional scaling, IEEE Trans. Visualization and Comp. Graphics, 8, pp. 198–207 (2002).CrossRefGoogle Scholar
  17. [17]
    Grossman, R., Kiryati, N., Kimmel, R. Computational surface flattening: a voxel-based approach, IEEE Trans. PAMI, 24, pp. 433–441 (2002).Google Scholar
  18. [18]
    Elad, A., Kimmel, R. Bending invariant representations for surfaces, Proc. CVPR (2001).Google Scholar
  19. [19]
    Borg, I., Groenen, P. Modern multidimensional scaling-theory and applications, Springer (1997).Google Scholar
  20. [20]
    Young, G., Householder, G.S. Discussion of a set of points in terms of their mutual distances, Psychometrika 3 (1938).Google Scholar
  21. [21]
    Tal, A., Elad, M., Ar, S. “Content based retrieval of VRML objects-an iterative and interactive approach”, EG Multimedia, 97 (2001).Google Scholar
  22. [22]
    Kimmel, R., Sethian, J. A. Computing geodesic on manifolds. Proc. US National Academy of Science 95, pp. 8431–8435 (1998).Google Scholar
  23. [23]
    Sethian, J. A. A review of the theory, algorithms, and applications of level set method for propagating surfaces. Acta numerica (1996).Google Scholar
  24. [24]
    Horn, E., Kiryati, N. Towards optimal structured light patterns, Image and Vision Computing, 17, pp. 87–97 (1999).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alexander M. Bronstein
    • 1
  • Michael M. Bronstein
    • 1
  • Ron Kimmel
    • 2
  1. 1.Department of Electrical EngineeringTechnion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Computer ScienceTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations